Global Terrorism Database

Story
Slides
Slide 1 Cover Page
Slide 2 Knowledge Base and Data Sets
Spotfire Dashboard
Research Notes
Global Terrorism Database
Information on Over 104,000 Terrorist Attacks
GTD Data Rivers
Exploring Global Terrorism Data: A Web-based Visualization of Temporal Data

Abstract
1 Introduction
2 Related Work
 Figure 1. NameVoyager [1]
 Figure 2. HistoryFlow [5]
 Figure 3. ThemeRiver showing Castro data from November 1959 through 1961. [6]
 Figure 4. 3D ThemeRiver [7]
 Figure 5. The Ebb and Flow of Movies: Box Office Receipts 1986 - 2007 [3]
3 The GTD Explorer
 Figure 6. The GTD Explorer
 3.1 Interactions
 3.1.1 Search Box
 Figure 7. (left) Countries view filtered by 's' in the search box (right) Countries starting with 'south'
 3.1.2 Filter Control
 Figure 8. Rank Filter
 3.1.3 Mouse Interactions
 Figure 9. A highlighted stripe
 3.1.4 Animation
 3.1.5 Details Grid

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by mindtouch™
4 Implementation

4.1 Development Tools

4.2 Design Decisions

4.2.1 Layout

4.2.2 Missing Data

4.2.3 Coloring

4.2.4 Performance

5 Results

5.1 Findings

5.2 Usage

6 Software Improvements

7 Conclusion and Future Work

8 Acknowledgements

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
This Date in Terrorism

Featured

How do you use the GTD?
Four Decades of Terrorism: A Message from START's Director
Additional START Datasets Now Available
Follow START on Twitter
GTD In The News
GTD Data Now Downloadable

About GTD

Overview of the GTD
Characteristics of the GTD
History of the GTD

GTD Team

Principal Investigator
Co-Principal Investigator
Project Manager
GTD Research Staff, University of Maryland
GTD Research Alumni
Technical Staff, University of Maryland
GTD Advisory Board

Contact the GTD Team

Using GTD

I'm a New User

GTD MAIN PAGE
ADVANCED SEARCH WIZARD
SEARCH RESULTS
TOOLS and TIPS

Data Collection Methodology

Scope of Data
Sources
Data Collection and the Definition of Terrorism
Synthesis of GTD1 and GTD2
Caution about Data Consistency
Codebook Development

Download the GTD or Contact GTD Team

Citing GTD
GTD in Research

LaFree, Gary and Erin Miller. 2009. "Desistance from Terrorism: What Can We Learn from Criminology?"Dynamics of Asymmetric Conflict. 1:203-230

Piazza, James and James Igoe Walsh 2010 "Physical Integrity Rights and Terrorism" Political Science and Politics 43: 411-414

Frequently Asked Questions

Can I use the GTD for my research/analysis/project?

Why does the data set end in 2011?

Why are the data for 1993 missing?

Why doesn’t GTD have a single definition of terrorism?

I came across an incident in the database that I do not believe is terrorism. Why was it included?

I found a factual error or a case missing from the database. How did this happen?

Does the GTD include foiled and failed plots or threats to attack?

Does the GTD include insurgency?

Does the GTD include incidents of state terrorism?

Who makes the decisions about what to include as an incident?

How do I get access to the raw data?
Who funds the database?
Is there a methodological reason for the decline in the data between 1997 and 1998?
I need to provide GTD data for an academic journal replication archive. Do I need permission?
Can the GTD be used as a source of information on legal dispositions of criminal charges?

Terms of Use
General Terms and Conditions of Use for the Global Terrorism Database (GTD)
Citing GTD
Contact
Download the GTD or Contact GTD Team
Media Inquiries
Distribution Letter

Codebook
INTRODUCTION
The Origins of the GTD
Introduction
Table: GTD Data Collection Phases by Collection Institution
Legacy issues
Transparency
Inclusiveness
GTD Definition of Terrorism and Inclusion Criteria
Additional Filtering Mechanism: “Doubt Terrorism Proper?”
Single Incident Determination

DATABASE VARIABLES
I. GTD ID and Date
GTD ID
Year
Month
Day
Approximate Date
Extended Incident?
Date of Extended Incident Resolution

II. Incident Information
Incident Summary
Inclusion Criteria
Doubt Terrorism Proper?
Alternative Designation
Part of Multiple Incident

III. Incident Location
<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
<th>Province / Administrative Region / U.S. State</th>
<th>City</th>
<th>Vicinity?</th>
<th>Location Description</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Geocoding Specificity</th>
</tr>
</thead>
</table>

IV. Attack Information

- **Attack Type**
- **Second Attack Type**
- **Third Attack Type**
- **Successful Attack?**
- **Suicide Attack?**

V. Weapon Information

- **Weapon Type**
- **Weapon Sub-type**
- **Second Weapon Type**
- **Second Weapon Sub-type**
- **Third Weapon Type**
- **Third Weapon Sub-type**
- **Fourth Weapon Type**
- **Fourth Weapon Sub-type**

Weapon Details

VI. Targets and Perpetrators

- **Target/Victim Information**
- **Target/Victim Type**
- **Name of Entity**
- **Specific Target/Victim**
- **Nationality of Target/Victim**
- **Second Target/Victim Type**
- **Name of Second Entity**
- **Second Specific Target/Victim**
- **Nationality of Second Target/Victim**
- **Third Target/Victim Type**
- **Third Target/Victim Type**
- **Name of Third Entity**
<table>
<thead>
<tr>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Specific Target/Victim</td>
</tr>
<tr>
<td>Nationality of Third Target/Victim</td>
</tr>
<tr>
<td>Perpetrator Information</td>
</tr>
<tr>
<td>Perpetrator Group Name</td>
</tr>
<tr>
<td>Perpetrator Sub-Group Name</td>
</tr>
<tr>
<td>Second Perpetrator Group Name</td>
</tr>
<tr>
<td>Second Perpetrator Sub-Group Name</td>
</tr>
<tr>
<td>Third Perpetrator Group Name</td>
</tr>
<tr>
<td>Third Perpetrator Sub-Group Name</td>
</tr>
<tr>
<td>First Perpetrator Group Suspected/Unconfirmed?</td>
</tr>
<tr>
<td>Second Perpetrator Group Suspected/Unconfirmed?</td>
</tr>
<tr>
<td>Third Perpetrator Group Suspected/Unconfirmed?</td>
</tr>
<tr>
<td>Number of Perpetrators</td>
</tr>
<tr>
<td>Number of Perpetrators Captured</td>
</tr>
<tr>
<td>Claim of Responsibility?</td>
</tr>
<tr>
<td>Mode for Claim of Responsibility</td>
</tr>
<tr>
<td>Competing Claims of Responsibility?</td>
</tr>
<tr>
<td>Second Group Claim of Responsibility?</td>
</tr>
<tr>
<td>Mode for Second Group Claim of Responsibility</td>
</tr>
<tr>
<td>Third Group Claim of Responsibility?</td>
</tr>
<tr>
<td>Mode for Third Group Claim of Responsibility</td>
</tr>
<tr>
<td>Motive</td>
</tr>
</tbody>
</table>

VII. Casualties and Consequences

<table>
<thead>
<tr>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Fatalities</td>
</tr>
<tr>
<td>Number of U.S. Fatalities</td>
</tr>
<tr>
<td>Number of Perpetrator Fatalities</td>
</tr>
<tr>
<td>Total Number of Injured</td>
</tr>
<tr>
<td>Number of U.S. Injured</td>
</tr>
<tr>
<td>Number of Perpetrators Injured</td>
</tr>
<tr>
<td>Property Damage?</td>
</tr>
<tr>
<td>Extent of Property Damage</td>
</tr>
<tr>
<td>Value of Property Damage (in U.S. $)</td>
</tr>
<tr>
<td>Property Damage Comments</td>
</tr>
<tr>
<td>Hostages or Kidnapping Victims?</td>
</tr>
<tr>
<td>Total Number of Hostages/ Kidnapping Victims</td>
</tr>
<tr>
<td>U.S. Hostages or Kidnapping Victims?</td>
</tr>
<tr>
<td>Number of U.S. Hostages/ Kidnapping Victims</td>
</tr>
<tr>
<td>Hours of Kidnapping / Hostage Incident</td>
</tr>
</tbody>
</table>
Story

Global Terrorism Database Experience

The Global Terrorism Database Home Page ask:

How do you use the GTD?

*Thousands of researchers, analysts, policy-makers, and students use the GTD every day. In an effort to better understand the strengths and limitations of the GTD in practice, START would like to learn more about how the GTD informs your work. While we always welcome feedback on the database from users, we now invite you to let us know more about your responsibilities and how the GTD has been helpful to your efforts to better understand the causes and consequences of terrorism.

Do you visit the GTD website to research particular events? Have you downloaded the full dataset to conduct your own analysis for a formal report? Do GTD background reports on current events provide informative context that has practical implications for your role in the homeland security enterprise? Have START researchers provided analysis of the GTD that lends empirical support to policy?
Please visit the GTD Contact Page and select "How I use the GTD" from the Action menu to share some details about how the GTD has worked for you. We encourage you to include your name, title, and institution/agency, so we can better understand the community we are serving. We will not share this information without your permission.

My purpose is to learn enough to answer those questions by building a knowledge base and visualization analytics.

I am also intrigued to know if Palantir has worked with all of these data sets. Wikipedia has a history of Palantir Technologies.

I built a knowledge base of the Web and PDF content so for example the Codebook has structure that can be linked to from the dashboard visualizations.

Slides

Slide 1 Cover Page

![Slide 1 Cover Page](http://semanticommunity.info/Data_Science/Global_Terrorism_Database)
Slide 2 Knowledge Base and Data Sets

Spotfire Dashboard

For Internet Explorer Users and Those Wanting Full Screen Display Use: Web Player Get Spotfire for iPad App

Research Notes

Heard about this at the August Graph Database Meetup

Start: http://www.start.umd.edu/start/

The National Consortium for the Study of Terrorism and Responses to Terrorism—better known as START - is a university-based research center committed to the scientific study of the causes and human consequences of terrorism in the United States and around the world.

Boston: http://www.start.umd.edu/start/announcements/announcement.asp?id=514

In light of the series of bombs that exploded near the finish line at the Boston Marathon on April 15, the University of Maryland’s National Consortium for the Study of Terrorism and Responses to Terrorism (START) has compiled data on the history of terrorism in Boston, Massachusetts, terrorist usage of coordinated attacks in the United States, and terrorist attacks at previous marathons around the world.

Data Collections: http://www.start.umd.edu/start/data_collections/
GTD Data Rivers: http://www.start.umd.edu/gtd/features/GTD-Data-Rivers.aspx

The GTD Data Rivers was developed as a joint effort between the Human-Computer Interaction Lab and START, both at the University of Maryland. Development efforts were led by Joonghoon Lee (joonghoon@gmail.com), under advisement from Ben Shneiderman and Adam Perer.

The GTD now includes approximately 105,000 terrorist incidents, which can now be explored in the Palantir platform.

For guidelines on using Palantir to explore GTD, start with the introduction video. If you're interested in more extensive documentation on using Palantir, please consult the online documentation.

Global Terrorism Database

Source: http://www.start.umd.edu/gtd/

Information on Over 104,000 Terrorist Attacks

The Global Terrorism Database (GTD) is an open-source database including information on terrorist events around the world from 1970 through 2011 (with annual updates planned for the future). Unlike many other event databases, the GTD includes systematic data on domestic as well as international terrorist incidents that have occurred during this time period and now includes more than 104,000 cases.

See: [Overview of the GTD](http://www.start.umd.edu/gtd/)

GTD Data Rivers

Source: http://www.start.umd.edu/gtd/feature...ta-Rivers.aspx

The GTD Data Rivers is an interactive visual exploratory tool that allows users to investigate temporal trends in terrorism in the Global Terrorism Database (GTD). The GTD Data Rivers aggregates important variables from the database and visualizes them as a comprehensible *stack chart*.

Five different *stack charts* can be selected:
My Note: Try to reproduce this in Spotfire

- Countries Attacked
- Regions Attacked
- Target Nationalities
- Types of Targets
- Types of Weapons

A stack chart analyzes every incident in the GTD, both domestic and international, from 1970 to 2010 (over 98,000 discrete events) and aggregates them according to the selection of the user. A unique layer is created for each data stream, with each stream reflecting a value of the variable being displayed. The thickness of each layer changes along the horizontal axis, representing its frequency in the database.

As an example, the default chart (Countries Attacked), creates a layer for every country in the GTD that has experienced a terrorist attack at some point since 1970. Thick layers represent countries that have had many attacks, whereas thin layers signify countries that had fewer attacks. Users can mouse-over a layer to see the country it represents and quickly see how the layer thickens or thins over time. In this example, users can also use the Search Box to look for specific countries, or filter according to incident counts. One of the benefits of stack charts is that aggregate trends emerge, as layers stack up like a histogram.

Additional information on the development of the GTD Data Rivers is available in the paper "Exploring Global Terrorism Data: A Web-based Visualization of Temporal Data." (J. Lee, “Exploring Global Terrorism Data: A Web-based Visualization of Temporal Data,” ACM Crossroads, 15, 2, 7-16, 2008.) (PDF)

Credits

The GTD Data Rivers was developed as a joint effort between the Human-Computer Interaction Lab and START, both at the University of Maryland. Development efforts were led by Joonghoon Lee (joonghoon@gmail.com), under advisement from Ben Shneiderman and Adam Perer.
Exploring Global Terrorism Data: A Web-based Visualization of Temporal Data

Joonghoon Lee
Computer Science Department & HCIL
University of Maryland, College Park
jhl@cs.umd.edu

Abstract

Recently, there has been a dramatic increase in both the amount of terrorism related literature and public interest towards the matter. Even so, it is difficult to gain access to relevant data. This is because much of the available data is not well organized nor of high quality, and available data is not very well presented.

The GTD (Global Terrorism Database) [4] is an open-source database that has information on 75,000 terrorist events around the world since 1970 through 2004. It is managed by the National Consortium for the Study of Terrorism and Responses to Terrorism (START) at the University of Maryland.

This report will introduce the GTD Explorer, a web-based interactive visual exploratory tool that deals with this data. It counts the number of incidents grouped over a certain criteria, and stack charts on top of each other to see both individual and accumulated patterns of incidents over time. This tool provides insight to experts while making the data approachable and informative. Making the visualization light-weight and universally accessible was one of the main concerns.

Since this is a web-based tool, there are certain challenges and limitations to the approach. Details of the implementation will be covered. Interesting facts that were found using the tool will be discussed.

1 Introduction

Dealing with terrorism has become the quintessential social problem for civilized societies. The world has changed in many ways during the last decade in response to this increased awareness. Yet, terrorism has always been existent.

Recently, there has been a dramatic increase in both the amount of terrorism related literature and public interest towards the matter. Even so, it is difficult to gain access to relevant data. This is because much of the available data is not well organized nor of high quality, and available data is not very well presented.

The Global Terrorism Database [4] is an open-source database that has information of terrorist events around the world since 1970 through 2004. It is managed by the National Consortium for the Study of Terrorism and Responses to Terrorism (START) at the University of Maryland, which claims to be “the most comprehensive open source data set on terrorism”. The START intends to make this data more accessible to the public and this tool is one way of doing so.

The GTD includes information on more than 75,000 terrorist attacks that occurred around the world between 1970 and 2004. The GTD data were collected by trained researchers who recorded terrorism attacks from wire services (including Reuters and the Foreign Broadcast Information Service), U.S. and foreign government reports, U.S. and foreign newspapers (e.g., the New York Times, the British Financial Times), and in recent years, the internet. The same coding scheme was used during the first 28 years of data collection. Researchers at the National Consortium for the Study of Terrorism and Responses to Terrorism (START) have been updating the data base during the past five years.
When this data was first released as a web-based version, the START GTD site had 36,000 visitors per month. START is expecting this number to increase substantially when a new version is released next year. In addition to supplying the data on line, this data is made available to policy analysts in the intelligence and defense communities and to academic researchers.

For the policy makers in particular, it is important to have a web-based version of the data. Given the longitudinal nature of the data, the database lends itself especially well to time series graphs.

This report introduces the GTD Explorer, a web-based interactive visual exploratory tool that deals with this data. The GTD Explorer basically takes key variables in the database and allows them to be visualized in data streams – the larger the number of attacks, or the number of weapons, the larger the stream. It counts the number of incidents grouped over a certain criteria, and stack charts on top of each other to see both individual and accumulated patterns of incidents over time. In this way, it is possible to see very rapidly how different units of analysis contribute to total outcomes.

This tool provides insight to experts while making the data approachable and informative. Making the visualization lightweight and universally accessible was one of the main concerns.

Since this is a web-based tool, there are certain challenges and limitations to the approach. Details of the implementation will be covered. Interesting facts that were found using the tool will be discussed.

2 Related Work

Martin Wattenberg’s NameVoyager [1] is a web-based visualization that provided much inspiration for this project. It is an interactive visualization of the popularity of America’s new born babies’ names over time. Each name is represented by a stripe which corresponds to the timeline of the name, from 1900 to 2006. A stripe is thicker on years when which the name was popular.

It uses a bi-color scheme, with gradient colors for usage frequency ranges. “In keeping with contemporary American custom” [2], light blue colors are used for boys and pinks for girls. The search functionality searches for prefixes in the entire dataset. The NameVoyager is a very compelling example of a web-based visualizations that provides much information to a domain expert in the subject matter, baby names, while also providing much pleasure to the general audience. It served as a guideline in building the GTD Explorer in many ways.

In [2], Wattenberg discusses how the NameVoyager can create an online social environment. It provides a thoughtful analysis of several factors that led to the popularity of the NameVoyager, based on comments collected from various web sources. Wattenberg analogizes NameVoyager commentators to MUD (multi user dungeon) game users [15], categorizing them based on their motive for interacting with other users.
HistoryFlow from IBM's Viegas, Wattenberg and Dave visualizes the editing history of Wikipedia pages. It is an effective exploratory data analysis tool that reveals interesting facts regarding the edits done to a file over time. It is a strong example of visualizations assisting in providing insights. Their visualizations resemble ThemeRiver™ and Inselberg's parallel coordinates.

“ThemeRiver™: In Search of Trends, Patterns, and Relationships” [6] visualizes thematic variations over time across a collection of documents. A three dimensional version was also presented in “Interactive Poster: 3D ThemeRiver™” [7].
The New York Times featured a well crafted visualization of the box-office record of movies from 1968 to 2007 called “The Ebb and Flow of Movies: Box Office Receipts 1986 - 2007” [3]. It’s appearance is also similar to that of the ThemeRiver visualization. It plots curves that build upwards and downwards along a horizontal time line.

The height of the curves depict how movies have fared at the box office. They adjust the figures for inflation to make a more meaningful compromise.

There are two versions, on and off-line. The difference between the two media, screen and newspaper, raises interesting questions. In the offline version, they have a much larger presentation area, making it possible for better labeling, and also permitting more information to be immediately displayed. On the other hand, the online version has interactions, allowing for zooming in, and more detailed information.
Revisionist[9], visualizes the evolution of software projects. It treats projects as a collection of files. The addition, removal and reorganization of these files throughout the course of development is visualized. It is an interesting approach, although addresses the problem of displaying massive amounts of text in limited screen space.

Ringel et al, “Milestones in Time: The Value of Landmarks in Retrieving Information from Personal Stores”[8], discusses a means to explore events along a timeline. The strategy is to narrow the scope of the search so that users can use relevant, nearby events to assist in their search. This strategy suggests a possible expansion to our tool, if we were to make our search more fine-grained.

“Building a Global Terrorism Database”[4] explains the dataset this tool was built upon. This database originally comes from the PGIS Corporations Global Intelligence Service (PGIS). It is a unique database with extensive detailed data. There is a possibility of potential media bias. Other weaknesses include misinformation, lack of information beyond incident specific details alone, and missing data from lost cards (data for the year 1993, due to an office move).

3 The GTD Explorer

The GTD Explorer is a tool that lets users explore the trend of terrorism incidents over time through an interactive visualization. The visualization consists of the main visualization, the search control, grouping control, filter control and details table.
The main visualization is a stacked chart image of the frequency of terrorist incidents each year. When the tool first loads there will be 203 stripes shown each corresponding to a country. These stripes each show how many terrorist attacks occurred in the corresponding country each year. The number of attacks is represented by the thickness of the stripe at the year on the x-axis.

Although the default grouping for stripes is the country the incident occurred in, it can be changed to other values. The combo box on the top right of the tool allows users to group the stripes using a different criteria such as Terrorist Organization, Target Nationality, Target Type, Type of Attack, Weapon Type, Region, etc.. In this chapter, we will assume we are using Country.

3.1 Interactions

The GTD Explorer follows Shneiderman’s mantra of “overview first, zoom and filter, details on demand”. [14] Once the program is loaded and displays the full set of data as described above, users may filter the data using two types of filters, or may demand further details of the data. Several user interactions are supported to make the data visualization more explorable and informative. The goal was to make these intuitive, so that first time users can easily use most of the functionality without a tutorial.

3.1.1 Search Box

Beneath the main visualization is the search control. It is a text box which users can edit. Whenever text is updated in here, the main visualization filters out the stripes to only show those that have a prefix in them that matches to the content of the text box.
3.1.2 Filter Control

The filter control is a vertical slider that has as many ticks as items in the visualization. This allows to filter out stripes that have a total count of incidents that falls outside the range of the filter control. The numbers on the slider represent the rank of the total count of incidents.

Figure 8. Rank Filter

This filter was originally designed to use the raw numbers. But in many cases the full range becomes very large, making it difficult to make minuscule changes. Another option would be to use a logarithmic scale. This could be more suitable in some cases, but inconvenient when there are only a few (< 20) items to filter, which is the case for several criteria, such as weapon type or attack type.

3.1.3 Mouse Interactions

When a user’s mouse hovers over a stripe, the name of the country that matches to the stripe, along with the color of the stripe appears in the upper left hand side. The year at which the mouse is at, along with the number of incidents during this year also appear beneath the country name. Also the targeted stripe’s border is highlighted in bright yellow, to let users see the selected stripe.
If a stripe is clicked on, the name of the selected item is filled in the search box, as if users typed it in. The visualization shows only this stripe.

The ‘Region’ view behaves in a slightly different way. Instead of showing the corresponding stripe, it shows all countries within this region. This is because we believe the details of a region are the countries in it.

3.1.4 Animation

Whenever the visualization is updated, the transition is shown as a short animation. This allows users to follow how the trend and patterns change as a result of the update. It also masks the short delay that occurs as a result of the update. When many visualization updates are made the transition is not as smooth as intended. This is an area that needs further improvement.

3.1.5 Details Grid

At the bottom right of the tool, there is a data grid that shows the data that is currently displayed. It gives further details of the data currently displayed. Each row represents a single stripe. First comes the name, and then the color of the corresponding stripe in the visualization. After that comes the cumulative count of data for this item. This count is used in filters.
Every time the visualization is updated, so is the data in this grid. It always shows all items that should be displayed. For implementation reasons, some of this data is not in fact visible. This will be discussed further in ‘Coloring’ (4.2.3).

3.1.6 Reset

At the top right of the application is a reset button. This cancels out all filters so that the visualization displays the full range of data. Users who want to go view the initial state of the visualization can use this button to initialize the visualization to display the full range of data without any filters applied.

4 Implementation

4.1 Development Tools

The GTD Explorer was implemented as a Flash application using the Adobe Flex platform and the Flex 3 SDK, so that it can be run on a wide variety of systems and browsers. The layout was done in mxml, and the underlying data structures and actions were implemented in ActionScript. The underlying data was split into small files to be loaded into ActionScript objects.

The decision to use Flash was because it is nearly ubiquitous on internet-enabled desktop computers. Nearly every computer has flash installed on it, making it the first choice for an application which aims to attract a large audience. Adobe claims that over 98.8% of internet-enabled desktops worldwide have Adobe Flash Player installed as of March 2008. [20]

The flare visualization toolkit [17] was used for the main visualization and transition effects. It is a port of the prefuse visualization toolkit [18], to an Actionscript library, and is an open source project that is still in alpha testing stage. Prefuse is a widely used visualization tool that was used in SocialAction, NameVoyager, Vizster etc.. We also used flexlib, the Open Source Flex Component Library to make use of their advanced components.

Java is another viable choice. NameVoyager [1] has used Java, to much success. Java can run on most web browsers on most platforms and has good library support. Being a general purpose language, it can also deal with a much wider set of tasks, and allows better performance.

But since reaching the general public was one of our main goals, we chose Flash over Java for it’s ubiquitousness.

4.2 Design Decisions

4.2.1 Layout

Since the visualization should comfortably fit into most computer screens, the size of the application was set at 800 × 600 pixels.

In the GTD Explorer, the pattern of change over time is the most important information. To most effectively convey this information, the stacked chart was plotted over a time range, and the chart was set to span the entire width of the application, and roughly half of the height.
Other components or labels are laid around this main visualization. At the top, there is a label saying “Incidents per Year Grouped By”, followed by a pull-down combo box. This combo box lets users select the grouping criteria. The label and combo box are positioned so that they appear as “Incidents per Year Grouped By Grouping Criteria”.

Beneath the visualization, are the filter controls and the details data grid. A vertical, not horizontal, slider was used for the incident count filter, since it seems to match the stacked charts, which are also stacked vertically.

It is a vertical slider with two control thumbs. The region between the two thumbs is colored to highlight the valid range. We used flexlib [19] version of the flex vertical slider, to allow for dragging the region in between the two sliders, not only the individual thumbs.

The details grid is positioned at the bottom right. We gave the the grid as much vertical space as we could without compromising the size of the main visualization, to display as many items as possible, and to minimize scrolling.

4.2.2 Missing Data

In the original GTD, all data for the year 1993 is missing due to an office move. If the missing data was treated as zero, there would be a sudden gap in 1993, possibly distracting users.

Another possibility was to interpolate numbers based on the previous and following year(s). When using such an approach, it was best to draw the chart according to the interpolated value, but also account for the fact that the data for this year is missing.

In order to let users know that 1993 does not have accurate data, an asterisk was placed along the horizontal axis, where 1993 was supposed to be. Hovering the mouse pointer over this asterisk reveals a text box mentioning that data for 1993 is missing, and the current shown graph is drawn based on interpolated values. This indicates that data in 1993 is dealt specially, without disturbing the overflow of the visualization.

There are also several incidents where a few fields have empty values. Such cases were just grouped as having the value “N/A”.

4.2.3 Coloring

Color plays an important role in the visualization. Not only does it let users distinguish adjacent stripes, but can also convey additional information regarding the underlying data. Also, if properly used it can make the visualization aesthetically appealing, more enjoyable. Colors that would convey extra information, but not overwhelm users, were chosen.

When the visualization groups by the country attacked, a similar color was used for countries in the same region. These colors are based on the colors assigned to the stripes in the 'Region' view. Within a region, countries with high counts are colored in darker shades. This also makes the interaction between the 'Region' and 'Countries' mentioned in chapter 3.1.1 smooth.

When meaningful extra information could not be found, a random RGB value was generated as the color of each stripe. The random value was biased to have stronger blue and green values, a relatively weaker red value, and softer hues.

When users hover the mouse pointer over a stripe, the targeted stripe’s border is colored a bright yellow, and it’s width is thickened.
The random color generator is biased to avoid creating a strong yellow. This keeps the highlighting effective. If adjacent stripes have similar colors, it is difficult to tell them apart. By drawing a thin white border around the stripe, this problem can be lessened. But when the data set is large and several hundreds of stripes have to be displayed, some parts of the chart become crammed, making individual stripes appear indistinguishable. This causes an unpleasant white region to be rendered, due to the dense collection of borderlines.

By assigning low alpha values to borderlines, both of the issues above are addressed. There still is separation between adjacent, similarly colored stripes, but crammed areas still display a hint of their original color. It is also apparent that it is a heavily filled area.

4.2.4 Performance

The original GTD raw data is over 60 megabytes in size and comprises more than 75,000 incidents. The loading and processing time for data of this size is significant on a web based program running on a personal computer. Also, as the current working set of data grows, many of the interactions become less and less responsive to user input.

Therefore the data was preprocessed to reduce the loading time. A python program was written that took the original data and counted the number of incidents per year grouped by certain criteria. A separate data file was created for each criteria, and is loaded each time the user asks for the corresponding criteria. This simplifies the data, trimming it down to a manageable size. This also makes it fairly easy to extend the tool to support different types grouping criteria. But by preprocessing data, much of the detailed information is lost.

Runtime responsiveness is also an issue when dealing with data sets with more than 1,000 items. Updates to the visualization often take several seconds.

Transition animations serve a twofold purpose: changes become more perceivable, and redrawing delays can be masked.

Thin stripes are not displayed. These stripes do not affect the appearance of the chart, yet can severely reduce the speed. The threshold for determining such stripes is based on the relative thickness of the stripe in question with regard to the thickest stripe that is currently displayed.

5 Results

Graduate students enrolled in the University of Maryland Information Visualization Spring 2008 course provided feedback on how the tool may be improved. Several graduate students in the Computer Science department of the University of Maryland were asked to report interesting findings in the GTD Explorer, and were observed to see how users use the tool. Suggestions from such users will be discussed in the next chapter.

Researchers from START have been using the GTD Explorer for over six weeks in public presentations, and for their own understanding. They have been relying on the tool to get a better sense of major trends in the GTD data and to explicate to others.

The START group wishes to push this visualization tool out to the intelligence and defense communities, as well as the general public, to gain further feedback. The GTD Explorer is expected to be posted on the START web site. User comments to the page should provide more valuable feedback.

5.1 Findings

The tool is especially useful for observing very rapidly the major time-linked structures buried in the data.
For example, many “hotbeds” of terrorism from the 1970s and early 1980s – such as Italy – became far less important after the 1990s, despite the overall increase in terrorism activity during this time.

Figure 11. Italy. There is a sharp decline in the number of incidents in the 80’s

![Graph showing a sharp decline in terrorism incidents in Italy during the 1980s.](http://semanticommunity.info/Data_Science/Global_Terrorism_Database)

Similarly, the visualization tool shows very clearly what a big impact the demise of the Soviet Union had on the nature of global terrorism. Following the collapse of the Soviet Union (1991), there are big declines in many politically oriented Marxist-Leninist terrorist attacks—which are increasingly replaced in more recent years with more religiously oriented jihadi-style groups. (Joonghoon: this came from Gary, I’m not sure how you can see this... I’ve sent an email asking about it)

The country-level visualization results show that the United States is somewhat unique in terms of terrorist attacks in that it continues to get attacked over the entire period spanned by the data – but by an ever-changing array of groups.

Figure 12. United States

![Graph showing terrorism incidents in the United States from 1972 to 1994.](http://semanticommunity.info/Data_Science/Global_Terrorism_Database)

It is apparent that in many cases, less than 20% of the top items make up for the vast majority of incidents; whether it be country attacked, terrorist organization or target nationality. Figure 13 shows three images with the rank filter set at different ranges.
The first image shows the full range of items. The second image shows only the items that are in the top 20% range, and yet the overall pattern is nearly identical. The third image shows the bottom 80% range. It is strikingly clear that the pattern is quite different, and the summed count is much smaller (around 800), at about one-fifth the total count (around 4000). Even a split at 10/90 would show similar results.

Figure 13. Take note at how the filtered range affects the visualization

5.2 Usage

Five users were given the tool and observed. They were given a brief introduction to the underlying data, but were not introduced to the features of the tool. They were given 5 minutes to play with the tool, without asking questions, and were asked a few simple questions regarding the data. Each question was given one at a time.

1) Which country had the most incidents in 1980?
 All users easily answered the first question.

2) Which country had the largest number of attacks in 1993?
 Two of the users were baffled with the second question, and did not notice that data was missing in 1993.
 The other users properly used the asterisk to reveal information.

3) Find how many incidents occurred in 1992 in Germany.
 For the third question, three users tried to first search for Germany by hovering the mouse pointer over stripes to find the target, be unsuccessful and use the search box. Only one person out of the five people used the search box first.

4) What is the total number of incidents, over the full time span, that occurred in Europe?
For the fourth question, four people answered easily, by switching to the regions view, but one person did not switch to the region view, and tried to add the count of all countries that the person knew to be in Europe. When later asked why, the person responded that he forgot such a feature existed.

5) Which is the more popular weapon type, Chemical Agents or Explosives?
Everyone answered the final question easily, even the person who had trouble with the fourth question. Since the question asked for a completely different type of data, it was apparent that some different action needed to be taken.

After the questions, each user was asked what facts seem interesting, and what features seem lacking. Sudden increases in terrorism activity in certain regions or countries particularly caught their interest, such as 1987 and 1988 in Sri Lanka. Users noted that the 1970's data seemed exceptionally small, and questioned what the spikes accounted for. All users were curious of why data in 1993 was missing.

Overall, users found the tool easy to learn and use, and were eager to learn more about the underlying data. One user who had previously been exposed to NameVoyager commented that also she enjoyed using the GTD Explorer, it was not as enticing as the NameVoyager data which she was more familiar with and could associate with people around her. Most users also commented on the response time, suggesting that an increased responsiveness would make the tool more usable.

6 Software Improvements
There are several software improvements that may be made.

In the visualization, stripes that have a wide region may be labeled. When dealing with larger data sets, the GTD Explorer can slow down quite a bit. Performance enhancements must be made to keep up with the growing data set.

One feature that was requested by multiple users was a comparison feature. Comparing several arbitrary items is not supported. One possible solution would be to have checkboxes in each row of the details grid. Users can select or deselect items to make corresponding stripes visible or not.

The details grid is convenient when users are searching for details of a particular item. Once they find this item, the corresponding stripes should be highlighted to lead the user.

When using interactive controls, users often want to undo/redo actions. History storing was a feature many users requested for.

7 Conclusion and Future Work
The GTD Explorer is a web-based visualization of the Global Terrorism Database, a database that contains data over time. It supports mouse and keyboard interactions to explore the data, and is easily extendable to support different types of data. It has a text based search filter, data count based filter, and detailed information grid which gives an overview of the data in text.

The work in this paper is largely a work in progress, suggesting several issues that remain for future investigation. First of all, these are issues that are related to the use of temporal data. A time-axis filter could be provided to zoom into specific time slots. A Time Searcher \[16\] style pattern searching feature could be useful in finding similar patterns.

Entity identification and resolution is also a problem. For example, a search for Germany suggests that the country was extremely peaceful until 1990, but a search for West Germany tells a different story. Czechoslovakia, Czech and Slovak or the Soviet Union and Russia would be other examples. Relating these entities is a problem to be solved.
Users tend to view temporal patterns in light of real world events, such as the Munich Olympics or September 11 World Trade Center attacks. An advanced version of the GTD Explorer could incorporate meaningful event data to offer a more comprehensive view of the data. Allowing public users to annotate the chart could generate interesting outcomes.

Also, when the data being displayed is geographical, it would be useful to have a world map view that shows where the incidents occurred using scattered dots. Heat maps may be used if there is much occlusion.

The GTD Explorer is a tool developed specifically for the Global Terrorism Database. A general framework that is applicable in visualizing time series or temporal data could be developed to aid future users or data providers.

In the future we would like to do an analysis of the social aspects of this tool. Feedback received from web users should be a valuable source in seeing what drives the users to use this tool and how they use it to communicate information.

8 Acknowledgements

I appreciate the invaluable guidance of Prof. Ben Shneiderman at the University of Maryland Human-Computer Interaction Lab. I am also extremely grateful to Adam Perer for his insight and thoughtful feedback and continued assistance throughout the project.

Many thanks to researchers from START, Gary LaFree, Alex Jonas, Erin Miller, Laura Dugan, Gary Ackerman, Kathleen Smarick. They have provided the Global Terrorism Database and have given opinions as experts on the subject matter. Without either, this project could not have been pursued.

I also thank my fellow graduate students who participated in the user study and provided many useful comments.
References

My Note: Page Not Found

[8] Ringel, M., Cutrell, E., Dumais, S., Horvitz, E. Milestones in Time: The Value of Landmarks in Retrieving Information From Personal Stores

[10]

[11]

[12]

[13]
Heer, J., Viégas, F., Wattenberg, M. Voyagers and Voyeurs: Supporting Asynchronous Collaborative Information Visualization

[14]

[15]

[16]

[17]

[18]
The prefuse visualization toolkit. http://www.prefuse.org/

[19]

[20]
Adobe Flash Player Version Penetration.
http://www.adobe.com/products/player census/flashplayer/
This Date in Terrorism

My Note: Query by Date and Location

August 30
2007

Dashta, Afghanistan
08/30/2007: Suicide bomber killed only himself in an attack aimed at an Afghani convoy in Dashta in the Konar district of Afghanistan. The perpetrator of this incident are unknown.
Learn more

2010

Unknown, Afghanistan
08/30/2010: On Monday night at 2200, in an unspecified location in the Kandahar province of Afghanistan, a rocket was fired by militants at the office of United Nations Assistance Mission in Afghanistan, and one security guard was injured. No damage was reported and no group claimed responsibility.
Learn more

Featured

How do you use the GTD?

Source: http://www.start.umd.edu/gtd/features/HowIUseGTD.aspx

Thousands of researchers, analysts, policy-makers, and students use the GTD every day. In an effort to better understand the strengths and limitations of the GTD in practice, START would like to learn more about how the GTD informs your work. While we always welcome feedback on the database from users, we now invite you to let us know more about your responsibilities and how the GTD has been helpful to your efforts to better understand the causes and consequences of terrorism.

Do you visit the GTD website to research particular events? Have you downloaded the full dataset to conduct your own analysis for a formal report? Do GTD background reports on current events provide informative context that has practical implications for your role in the homeland security enterprise? Have START researchers provided analysis of the GTD that lends empirical support to policy?

Please visit the GTD Contact Page and select "How I use the GTD" from the Action menu to share some details about how the GTD has worked for you. We encourage you to include your name, title, and institution/agency, so we can better understand the community we are serving. We will not share this information without your permission.

Four Decades of Terrorism: A Message from START's Director

Source: http://www.start.umd.edu/gtd/feature...orMessage.aspx

June 2011
Our understanding of terrorism was forever transformed by the events of September 11, 2001. As we approach the 10th anniversary of those attacks, this new release of the Global Terrorism Database (GTD) marks a milestone in our collective knowledge of terrorist activity. For the first time, we have information spanning four decades on both domestic and international terrorist attacks from around the world. Nine years ago, when we began the challenging process of investigating and coding tens of thousands of terrorist attacks dating back to 1970, our goal was to bring the collection of the GTD into near real-time. In the past year, our research team at START and our partners at the Institute for the Study of Violent Groups at the University of New Haven have accomplished this goal, and the website now includes information on attacks through December 2010. With continuing government support, we plan to release future versions of the GTD on an annual basis.

While data collection is ongoing, the GTD team at START continues to supplement the existing data with cases from additional sources. The current GTD includes additional information on terrorism from over 15 major chronologies, academic sources, and media outlets. In particular, we have made a substantial effort to update data on terrorism in the United States since 1970. In addition, we have undertaken several multi-source projects to improve the validity and comprehensiveness of data for critical areas, including Sri Lanka and North Africa. These supplemental data collection efforts have doubled the number of events recorded for the United States, and contributed another 3,500 attacks worldwide to the database.

Today, with over 98,000 discrete attacks in our database -- both domestic and international -- the updated and expanded GTD is accessible through this website. The nature of terrorist threats facing the United States and other countries continues to evolve over time. An objective empirical understanding of the causes and consequences of terrorism has never been more important. The GTD team and START are pleased to be able to collect, validate, and distribute these data to policy makers and researchers. We plan to continue to expand and enhance GTD in the coming years to ensure that it remains a valuable resource to homeland security practitioners and to the research community.

Best Wishes,

Gary LaFree

Director, National Consortium for the Study of Terrorism and Responses to Terrorism (START)

Additional START Datasets Now Available

Source: http://www.start.umd.edu/gtd/feature_lections.aspx

My Note: Lots of data sets so that one could produce a Spotfire Library.

Utilizing the Dataverse Network Project, START has created its own repository of datasets and databases on terrorism, conflict, and preparedness. This collection includes research funded by START as well as research for which START has been given permission to release. Users can read over detailed information about each dataset regarding its time period, geographic coverage, and sampling procedure.

Follow START on Twitter

Source: http://twitter.com/START/umd
For the latest developments in START research, general news about terrorism, and a "This Day in Terrorism" feature, follow the new START Twitter Feed.

Twitter with us >>

GTD In The News

Source: http://www.start.umd.edu/gtd/features/GTD-In-The-News.aspx

My Note: I did not capture this page with lots of news stories.

START Director and Researcher Gary LaFree comments on 9/11 and the GTD (Security Management) "Before 9-11, there was no comprehensive terrorism database..." In a presentation at the National Institute of Justice 2011 Conference, Gary LaFree discussed the Global Terrorism Database and top-line findings.

GTD Data Now Downloadable

The data files for START's Global Terrorism Database (GTD) can now be downloaded directly from the GTD's website.

GTD includes thorough data on more than 98,000 terrorist incidents that have occurred around the world since 1970. Users can now download these data via the "Contact GTD" portion of the GTD website.

Users should select the Download full GTD dataset option under Actions in the contact form provided.

See: Download the GTD or Contact GTD Team

Data is provided in Excel format. My Note: This caught my attention and caused me to download the datasets.

About GTD

Source: http://www.start.umd.edu/gtd/about/

Overview of the GTD

Source: http://www.start.umd.edu/gtd/about/

The Global Terrorism Database (GTD) is an open-source database including information on terrorist events around the world from 1970 through 2011 (with additional annual updates planned for the future). Unlike many other event databases, the GTD includes systematic data on domestic as well as transnational and international terrorist incidents that have occurred during this time period and now includes more than 104,000 cases. For each GTD incident, information is available on the date and location of the incident, the weapons used and nature of the target, the number of casualties, and--when identifiable--the group or individual responsible.

Statistical information contained in the Global Terrorism Database is based on reports from a variety of open media sources. Information is not added to the GTD unless and until we have determined the sources are credible. Users should not infer any additional actions or results beyond what is presented in a GTD entry and specifically, users should
not infer an individual associated with a particular incident was tried and convicted of terrorism or any other criminal offense. If new documentation about an event becomes available, an entry may be modified, as necessary and appropriate.

The National Consortium for the Study of Terrorism and Responses to Terrorism (START) makes the GTD available via this online interface in an effort to increase understanding of terrorist violence so that it can be more readily studied and defeated.

Characteristics of the GTD

- Contains information on over 104,000 terrorist attacks
- Currently the most comprehensive unclassified data base on terrorist events in the world
- Includes information on more than 47,000 bombings, 14,000 assassinations, and 5,300 kidnappings since 1970
- Includes information on at least 45 variables for each case, with more recent incidents including information on more than 120 variables
- Supervised by an advisory panel of 12 terrorism research experts
- Over 3,500,000 news articles and 25,000 news sources were reviewed to collect incident data from 1998 to 2011 alone

Government representatives and interested researchers may request versions of the data directly through the [GTD Contact Form](#).

History of the GTD

Source: http://www.start.umd.edu/gtd/about/History.aspx

The Global Terrorism Database--or GTD--began in 2001 when researchers at the University of Maryland obtained a large database originally collected by the Pinkerton Global Intelligence Services (PGIS).

From 1970 to 1997, PGIS trained researchers--mostly retired Air Force personnel--to identify and record terrorism incidents from wire services, government reports, and major international newspapers in order to assess the risk of terrorism for their clients. With funding from the National Institute of Justice, the Maryland team finished digitizing the original Pinkerton data in December 2005, making corrections and adding additional information wherever possible. PGIS lost data for 1993 in an office move and these data have never been fully recovered.

In April 2006, the National Consortium for the Study of Terrorism and Responses to Terrorism (START), working with the Center for Terrorism and Intelligence Studies (CETIS), received additional funding from the Human Factors Division of the Department of Homeland Security (DHS) to extend the GTD beyond 1997. This effort is distinct from the original collection because CETIS analysts had to search archival sources for documented attacks, rather than recording events as they occurred. Some earlier media sources are simply unavailable, undoubtedly reducing the total number of attacks that were identified since 1997. In addition, efforts begun for post-1997 cases used a slightly modified definition of terrorism, with information on specific criteria for identification as a terrorist incident included for each case, and expanded the number of variables collected for each attack.
By August 2008 data collection was completed for incidents that occurred through 2007. In Fall 2008, the GTD team applied the newly-developed inclusion criteria to the earlier GTD data in order to form a single source of information on terrorist attacks, covering the entire period 1970 to 2007 (see the "Synthesis" section of Data Collection and Methodology).

In Spring 2008, analysts from the Institute for the Study of Violent Groups (ISVG) at the University of New Haven collected data for the GTD on terrorist attacks that occurred between April 2008 and October 2011. Research assistants at START at the University of Maryland integrated these data into the database, while continuing to make improvements to the earlier data. GTD staff members at START routinely review a wide array of sources to identify additional cases and additional information about previously identified cases, to help ensure that GTD is as comprehensive and accurate as possible for its full time span. Data from these collection efforts are also integrated into the current version of GTD. Additional information on these collection efforts can be found in the codebook (see dbsource field). Beginning with attacks that occurred in November 2011, all ongoing GTD data collection efforts are conducted by START staff at the University of Maryland.

Thus, the Global Terrorism Database is a compilation of distinct data collection efforts from 1970 to the present. From 1970 to 1997 the data were constructed primarily from incidents recorded in real-time by PGIS using a broad-based definition of terrorism. Data from this period are updated and corrected on an ongoing basis. The data from 1998 through 2007 were primarily collected retrospectively, with data on more recent events being collected in real-time and with the benefit of more robust media archives. Thus, users should note that differences in levels of attacks before and after 1997 may be at least partially explained by differences in data collection; researchers should adjust for these differences when modeling the data. Nonetheless, criteria for collecting data were established and applied to the full set of cases to assure the adherence to a broad definition of terrorism and also to allow users to filter out cases that may be inappropriate for their specific analytical interests. The data now form a complete series from 1970 to the present—except for 1993.

GTD Team

Source: http://www.start.umd.edu/gtd/about/GTDTeam.aspx

Principal Investigator

Gary LaFree, Director, START, and Professor, Criminology and Criminal Justice, University of Maryland

Co-Principal Investigator

Laura Dugan, Associate Professor, Criminology and Criminal Justice, University of Maryland

Project Manager

Erin Miller, Faculty Research Assistant, START
I'm a New User

This section is designed to provide you with a roadmap for the contents and features of the Global Terrorism Database (GTD) site to assist you as begin to navigate this tool.

Source: http://www.start.umd.edu/gtd/NewUser.aspx

GTD MAIN PAGE

http://semanticommunity.info/Data_Science/Global_Terrorism_Database

Updated: Sat, 19 Sep 2015 05:15:30 GMT

Powered by mindtouch
About GTD: Text describing the characteristics of the GTD data collection, the evolution of this project and phases of its development, and information on the team involved in collecting, compiling, reviewing, and analyzing the GTD data.

Using GTD: Text description of the scope of the GTD data collection and the sources and methods used for collecting the data, including specification of the definition of terrorism used by GTD. Using GTD also includes a link to the GTD Codebook, a useful document that describes full details on all of the variables included in GTD and the range of possible values for each variable available via the GTD website. Using GTD also includes links to publications that have used versions of the GTD in a range of analyses.

FAQ: Information on what is and is not included in the GTD, and the rationale behind specific decisions.

Terms of Use: Specification of rules for using these data and for citing information from the GTD website.

Contact: Form to send to the GTD team queries on specific incidents, on methodology, or on web-site functionality. This section also includes an option to request a version of the GTD data files. In addition, Contact includes information for media who have questions about GTD, trends in terrorism, or a specific incident.

Searching GTD: Users have three different ways to search for GTD incidents using the website: browsing, keyword search, and the advanced search wizard.

- Browsing GTD: Browsing is the least flexible search approach, through which users are given the option to generate a list of all GTD incidents (1970-2008) that share one characteristic, selected by the user.
 - To Browse, using the computer's mouse, select one variable from the list of 6 "Browse by" variables (region, country, perpetrator, weapon type, attack type, or target type).
 - Then, click on the "Go" button.
 - At the next screen, select one value for that variable from the list provided. (For instance, a user can select the value "Chemical" under the variable "Weapon Type"). Once you have clicked on the selected variable value, you'll be taken to the Search Results page, providing information on all GTD cases that reflect the specified characteristics.

- Search by Keywords: Users can search all of the text associated with descriptions of GTD incidents by using the keyword Search function. This feature will identify those cases in which the keyword appears in the description of any of the variables for each incident.
 - To Search by Keyword, enter the search term(s) in the Search box, and click on the "Search" button. Once you have clicked on Search, you'll be taken to the Search Results page, with a list of all GTD incidents that include those term(s) anywhere within the incidents description.
 - If a user enters multiple words in the Search box, the Search Results list will include those incidents that include all of the words entered by the user.

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by mindtouch
• Do not use quotation marks or apostrophes when entering text in this search field.

• Advanced Search: This search wizard provides users with the opportunity to identify a collection of search parameters and to conduct a customized search for the incidents that meet those parameters.

7 GTD Data Rivers: This element is the product of a partnership between START and the Human-Computer Interaction Lab at the University of Maryland and displays GTD data clustered over time by country or region of attack, target type, and weapon type. Users can customize the data rivers display to show just the incidents, locations, and time periods of most interest to the user.

8 This Date in Terrorism: Highlights terrorist events that have occurred on today's date in past years. This feature updates daily and presents information on different incidents from this date each time you return to the home page. Users can directly link to full incident information for these highlighted cases by clicking "Learn more".

9 Featured: This rotating element provides information on new research using GTD, GTD media stories, and announcements and opportunities from START. The Feature changes each time a user returns to the home page.

ADVANCED SEARCH WIZARD

After clicking on the Advanced Search button, users will be presented with a search interface that specifies the search parameters included within the search wizard. Users can select search parameters from among the following categories, as labeled on the Tabs on the left side of the search wizard:
Users can select values in one, several, or all of these categories. In general, the more categories selected, the more restrictive and selective a user’s search results will be. To specify parameters for any of the categories, click on the desired tab.

Each tab has a color-coded button indicating whether the user has selected search parameters for that category or not:

- red means no search parameters were selected in this category,
- the button is yellow for the category currently being viewed, and
- green means the user has selected search criteria within this category for the upcoming search.

If a user does not identify search parameters for any given category (that is, at any of the tabs), the search results will include incidents with any value in that category.

WHEN

Select incidents that occurred within a selected time period, specified by exact dates or by years, between 1970 and 2008.

- To define the search by years, select the starting and concluding year from the drop down lists at the top of the page, with the earlier date in the left-hand box. Note that data are missing for 1993, as explained in Data Collection and Methodology, thus users cannot search by this year.

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by mindtouch
• To define the search by specific dates, select beginning and ending years, months, and dates from the provided drop-down lists. The search period can range from one day to 30+ years.

• If a user enters only the year and month (but no day), the search wizard will complete the date by choosing the first day of the month for the start date and the last day of the month for the end date.

• If searching by "when," users can use only of the two search options - by years or by specific dates.

REGION

Check one or more geographic region to identify those incidents that occurred within that geographic context. (Listing of regions is available in the GTD Codebook.) Regions are presented here in alphabetical order.

COUNTRY

Select one or more countries to identify those incidents that occurred within that geographic context. (Listing of countries is available in the GTD Codebook.) Countries are presented here in alphabetical order.

• If a user selects both a region and a country, the search will identify no incidents if the selected country falls outside of the region(s) selected.

PERPETRATOR

Select the name of one or more organizations to identify those incidents for which that organization is known to be responsible for the attack. Perpetrators are presented here in alphabetical order.

WEAPON TYPE

Check one or more weapon type to identify those incidents that involved that weapon type. (Listing of GTD weapon types is available in the GTD Codebook.)

ATTACK TYPE

Check one or more attack type to identify those incidents that involved that attack type. (Listing of GTD attack types is available in the GTD Codebook.) Also, specify if you want search results to include only cases that are suicide attacks or only cases that are not suicide attacks. Whether or not the incident is a suicide attack is evaluated independently of attack type.

TARGET TYPE

Check one or more target type to identify those incidents that involved that target type. (Listing of GTD target types is available in the GTD Codebook.)

TERRORISM CRITERIA

Customize the definition of terrorism in order to select only those incidents that meet the definition of terrorism that the user is employing.

• All cases in GTD meet at least 2 of the 3 criteria for a terrorist incident presented at this tab and explained at GTD Codebook. This portion of the search wizard allows a user to require any one, two, or three of those criteria.

• Requiring any of the criterion or criteria to be met will reduce the overall number of incidents identified in the search.

• In collecting information on each of these incidents, researchers sometimes faced challenges in determining whether an incident clearly met each of the specified criteria. As a result, approximately 5% of all the cases in GTD...
are marked as "ambiguous"—that is, based on the information available, the GTD team believes this case meets GTD's definition as a terrorist incident, but some doubt exists about this classification.

- The default setting for the Advanced Search (and all GTD Search options) is to include these "ambiguous cases" in listings of search results.
- Users who want to restrict their search to only those cases for which there is no doubt of terrorism should select the "Exclude Ambiguous Cases" option at this tab.
- Although the GTD does not include terrorist plots and conspiracies, it does include cases that were attempted but not successfully carried out either because the attempt was thwarted or otherwise failed. Users can select whether or not they want to exclude unsuccessful attacks from their search results. The default setting is to include these attacks.

CASUALTIES

Specify the number of injuries, fatalities, or injuries and fatalities per incident to select only those incidents that meet those casualty parameters.

- Users need to specify casualty type (injuries, fatalities, or injuries and fatalities) for which they want to search.
- After selecting the casualty type, a users will specify whether they want to identify incidents with no casualties, any number of casualties, 1-10 casualties, 11-50 casualties, 51-100 casualties, or more than 100 casualties (or incidents with an unknown number of casualties) by selecting the appropriate category from the drop down list at "Number of Casualties."
- For data on specific number of casualties per incidents, users can request the full GTD data file, which includes this fine-grained data.

The screen for each Tab has a "clear all" function in the upper right-hand corner of the tab's title bar, which will clear the selections for that tab only. Tabs that allow multiple selections (Country, region, weapon type, attack type, and target type) have a "check all" function in the upper right-hand corner of the tab's title bar. Selecting "check all" will check all of the values in that category, such that the search results will include incidents with any value in that category.

Users can execute their advanced search from any tab in the search wizard by clicking on the "Search" button at the bottom of the wizard screen.

To clear all selections made in any/all of the categories, a user can click on "Clear All Tabs" at the bottom of the wizard page. Alternatively, users can click on "New Search" at the bottom of the page to clear the search wizard and start the process again.
SEARCH RESULTS

The results of simple and advanced searches are displayed on the Search Results Page, which includes charting tools, a summary of the search criteria, and a listing of key variables for cases that satisfy the specified search criteria.

• Chart Results:
 ◦ The charting tools allow users to view and print various graphical representations of the cases that satisfy the search criteria. Use the tabs on the left to select the variables you want to chart, including incidents over time, country, attack type, target type, weapon type, perpetrator, casualties, fatalities, injuries and regions.
 ◦ For selected variables, users have a choice of what type of chart to display, including line charts, bar charts, and pie charts. Additional information on charting options is available in the Tools and Tips section below.
• **Search Criteria:**

The search criteria review box reminds users of the specific search parameters that produced the search results. Note that users can regenerate the results of a particular search by saving or emailing the URL of the Search Results page (See Tools and Tips, below). To edit the search parameters, select "Back to Advanced Search."

• **Listed Results:**

The results list displays selected variables for each of the cases that satisfy the search criteria, including GTDID, Date, Country, City, Perpetrator(s), Fatalities, Injuries, and Target Type. Clicking on the GTD ID displays full incident details.

 ◦ Click "Show Expanded Results" to add Region, Attack Type, and Weapon Type to the list. Click "Hide Expanded Results" to return to the default display of variables.

 ◦ Users can sort the results list by GTD ID, Country, City, Fatalities, Injuries, or Region (in the Expanded Results) by clicking on the variable name. A red line will appear above the variable name when the results are sorted in ascending order, and below the variable name when results are sorted in descending order.

 ◦ By default, the list of results displays 20 incidents per page. Select "More Results" to continue paging through results list. Use the options at the bottom of the listed results to jump to a particular page or change the number of incidents per page to 30, 50, or 100.

• **Incident Detail Page:**

 ◦ To view the incident detail page, click on an incident's GTD ID number. The incident detail page includes information on the date and location of the attack, as well as an incident summary, and data on the attack, target, hostages, kidnapping, property damage, weapon, perpetrator, casualties, and sources where available. The incident detail page also includes information on whether or not each GTD inclusion criterion is met. Mouse-over the "What," "How," "Who," and "Incident Sources" tabs to help navigate the various dimensions of the data.
◦ For additional information on how selected variables are defined, click "More" and a new window will open.

◦ To return to the Search Results page click "Back to Search Results." To edit advanced search parameters, click "Back to Advanced Search."

TOOLS and TIPS

• Using the Print tool:
All pages except the GTD homepage have a printer-friendly version. Look for the print icon in the upper right-hand side of every page.

• Using the Email tool:

 - All pages except the GTD homepage have an email icon in the upper right-hand side of the page. Use this tool to send the page's URL to yourself or a colleague.

 - Users can take advantage of the Email tool from the Search Results page to preserve the search criteria that produced the results. Use this tool to save results for future visits to the GTD website.

• Using the Export tool:

 Select "Export" from the Search Results page to produce a comma-separated value (.csv) file containing the expanded results list. Exports are limited to the first 1,000 results of the search. To request a copy of the full dataset on compact disc, use the Contact Form available from the menu at the top of the page.

• Using GTD's Codebook along with the GTD website:

 For additional information on the data collection methodology and variable definitions the user can refer to the GTD codebook by selecting "Using GTD" from the menu at the top of the page. The codebook will open in a new window.
• **Chart Display Tips:**

 ◦ In some cases the total number of cases represented in a chart exceeds the number of incidents reported in the search results list. This is due to the fact that certain variables, such as Target Type, Weapon Type, and Attack Type, can have multiple values per case. If, for example, a particular attack involved the use of two different types of firearms, both the first weapon type and the second weapon type will be recorded as "Firearms" and the charting tool will count that attack twice. Thus, a chart of weapon type represents the number of times a particular type of weapon is used, rather than the number of attacks that involve a particular type of weapon.

 ◦ Note that if the results of a search span six years or less, the X-axis of the line chart is measured in months. For results that span more than six years, the X-axis of the line chart is measured in years.

 ◦ Pie charts contain segments for any values that represent more than .5% of the pie. Values that represent less than .5% of the pie are excluded from the chart, but included in the chart legend.

 ◦ For line charts and pie charts users can toggle the display of specific values on and off by clicking on that value in the chart legend.

 ◦ To view a chart in Full Screen mode or to Print the chart, right-click on the chart you are viewing.
• Contact the GTD Team or join the START email list.

To send to the GTD team inquiries or feedback on specific incidents, on methodology, or on web-site functionality, please use the Contact Form available from the menu at the top of the page. Users may also download the GTD data files and documentation or join the START mailing list. In addition, media representatives who have questions about the GTD, trends in terrorism, or a specific incident can find media contact information here as well.

Data Collection Methodology

Source: http://www.start.umd.edu/gtd/using-gtd/

The Global Terrorism Database (GTD) was developed to be a comprehensive, methodologically robust set of longitudinal data on incidents of domestic and international terrorism. Its primary purpose is to enable researchers and analysts to increase understanding of the phenomenon of terrorism. The GTD is specifically designed to be amenable to the latest quantitative analytic techniques used in the social and computational sciences.

Scope of Data

The GTD was designed to gather a wide variety of etiological and situational variables pertaining to each terrorist incident. Depending on availability of information, the database records up to 120 separate attributes of each incident, including approximately 75 coded variables that can be used for statistical analysis. These are collected under eight broad categories, as identified in the GTD Codebook, and include, whenever possible:

• incident date,
• region,
• country,
• state/province,
• city,
• latitude and longitude (beta)
• perpetrator group name,
• tactic used in attack,
• nature of the target,
• identity, corporation, and nationality of the target (up to three nationalities),
• type of weapons used (up to three weapons types),
• whether the incident was considered a success,
• if and how a claim(s) of responsibility was made,
• amount of damage, and more narrowly, the amount of United States damage,
• total number of fatalities (persons, United States nationals, terrorists), and
• total number of injured (persons, United States nationals, terrorists).

Other variables provide information unique to specific types of cases, including kidnappings, hostage incidents, and hijackings.

Sources

Information in the GTD is drawn entirely from publicly available, open-source materials. These include electronic news archives, existing data sets, secondary source materials such as books and journals, and legal documents. All information contained in the GTD reflects what is reported in those sources. While the database developers attempt, to the best of their abilities, to corroborate each piece of information among multiple independent open sources, they make no further claims as to the veracity of this information. Users should not infer any additional actions or results beyond what is presented in a GTD entry and specifically, users should not infer an individual associated with a particular incident was tried and convicted of terrorism or any other criminal offense. If new documentation about an event becomes available, an entry may be modified, as necessary and appropriate.

As discussed in more detail below, the first phase of data for the GTD (GTD1: 1970-1997) was collected by the Pinkerton Global Intelligence Service (PGIS)—a private security agency. Cases that occurred between 1998 and March 2008 were identified and coded by the Center for Terrorism and Intelligence Studies (CETIS), in partnership with START. A third data collection phase was instituted for cases that occurred between April 2008 and October 2011, with efforts led by the Institute for the Study of Violent Groups at the University of New Haven (ISVG). Beginning with cases that occurred in November 2011, all ongoing GTD data collection is done by START staff at the University of Maryland. In addition, GTD researchers have worked to supplement information on additional cases throughout the full duration of the GTD.

In addition to data originally collected by PGIS, CETIS, and ISVG, cases identified in other archives of terrorism incidents have also been incorporated, including:

• Global terrorism incident data provided by Alex P. Schmid, Director of the Terrorism Research Initiative (TRI). We thank Prof. Schmid for allowing us to draw from databases he developed in the course of his career in academia and in the United Nations.
• Maghreb & Sahel Terrorism: Addressing the Rising Threat from al-Qaeda and other Terrorists in North & West/ Central Africa, by Yonah Alexander
• Political Violence and Terrorism in Modern America, by Christopher Hewitt
• the Conflict Archive on the Internet
• the Australian Turkish Media Group and, Armenian Terrorism: The Past, Present, the Prospects, by Francis Hyland
Data Collection and the Definition of Terrorism

Data for GTD1 (1970-1997) were collected by PGIS. The collectors of the PGIS database aimed to record every known terrorist event within and across countries and over time, as identified in multi-lingual news sources, for the purpose of performing risk analysis for U.S. businesses. Incidents were collected according to the following definition of terrorism:

"the threatened or actual use of illegal force and violence by a non-state actor to attain a political, economic, religious, or social goal through fear, coercion, or intimidation."

It is well-recognized that divergent definitions of terrorism abound and that the nature and causes of terrorism are hotly contested by both governments and scholars. While certain broad elements of terrorism are generally agreed upon (such as the intentional use of violence), many other factors (such as whether the victims of terrorism must be non-combatants or whether terrorism requires a political motive) continue to be debated. Indeed, even where there is some consensus at the broadest level, there is often disagreement on the details.

While the original GTD1 employed the definition of terrorism utilized by PGIS, the second phase of data collection for the GTD (GTD2: 1998-2007) parsed the PGIS definition into parts and coded each incident so as to allow users to identify only those cases that meet their own definition of terrorism. Based on the original GTD1 definition, each incident included in the GTD2 had to be an intentional act of violence or threat of violence by a non-state actor. In addition, two of the following three criteria also had to be met for inclusion in GTD2:

1. The violent act was aimed at attaining a political, economic, religious, or social goal;
2. The violent act included evidence of an intention to coerce, intimidate, or convey some other message to a larger audience (or audiences) other than the immediate victims; and
3. The violent act was outside the precepts of International Humanitarian Law.

These criteria—which continue to be employed by data collectors in post-2007 collection efforts—were constructed to allow analysts and scholars flexibility in applying various definitions of terrorism to meet different operational needs. Therefore, users of the database can select which definitional criteria most closely matches the definition of terrorism they are using and then filter the data set accordingly when performing searches or other analyses. For more details about the various criteria and how to use this in practice, please see the GTD Codebook.

Users can also exclude cases in which there was some doubt as to whether the incident was truly a terrorist act. Some incidents simply do not have enough information to make a definitive distinction between, for example, terrorism and insurgency. For more details about this filtering function, please see the GTD Codebook.
Synthesis of GTD1 and GTD2

Until 2008, the Global Terrorism Database remained divided into two separate data sets. Integrating the two data sets was challenging primarily because of the definitional differences between GTD1 and GTD2. We first had to determine which GTD1 incidents met the GTD2 criteria for inclusion and therefore belonged in the comprehensive GTD database. Some GTD1 incidents—for example, those better described as guerrilla warfare—did not meet GTD2 inclusion criteria and were excluded from the combined database. In addition, GTD1 data originally had 44 descriptive variables per incident, while GTD2 had an additional 84 variables per incident. Thus, the synthesis involved developing corresponding GTD1 information for the additional GTD2 data fields, where possible.

To synthesize the two data sets, START, in conjunction with CETIS, implemented a system whereby every incident from the GTD1 was reviewed, codes for the three definitional criteria and all other fields within GTD2 were added to GTD1, and coders evaluated the incident for inclusion within a synthesized new GTD. Seventeen coders were trained and a review of the incidents occurred from April 2008 to December 2008. Incidents that failed to meet two of the three criteria developed for GTD2 were removed from the new synthesized GTD.

Caution about Data Consistency

Even though efforts have been made to assure the continuity of the data from 1970 to the present, users should keep in mind that the collection was done in real time for cases between 1970 and 1997, was retrospective between 1998 and 2007, and is again in real time after 2007. This distinction is significant because some media sources have since become unavailable, undoubtedly impeding efforts to collect a complete census of terrorist attacks between 1998 and 2007. Thus, users should note that differences in levels of attacks before and after January 1, 1998 and before and after April 1, 2008 are at least partially explained by differences in data collection; researchers should adjust for these differences when modeling the data. Furthermore, cases from 1993 were lost prior to receiving the data from PGIS. Efforts thus far have been unsuccessful in fully recovering the 1993 data. Instead of providing a partial listing of cases for 1993, we refer the user to a table provided by PGIS of the total number of attacks in 1993 for each country (see the GTD Codebook's Appendix).

Codebook Development

The criteria for incident inclusion and the coding scheme used in GTD were developed by a START Advisory Board, which consisted of recognized experts in terrorism and data collection. A detailed description of the database criteria and coding scheme can be found in the GTD Codebook. For more details on the GTD, please see our Frequently Asked Questions page, or download the GTD Codebook.

Download the GTD or Contact GTD Team

Source: http://www.start.umd.edu/gtd/contact/

My Note: See below

Codebook

Source: http://www.start.umd.edu/gtd/downloads/Codebook.pdf (PDF)
Citing GTD

Source: http://www.start.umd.edu/gtd/using-gtd/CitingGTD.aspx

All information sourced from the GTD should be acknowledged by the USER and cited as follows:

Further Reading

GTD in Research

Source: http://www.start.umd.edu/gtd/using-gtd/GTDinResearch.aspx

Using data from the University of Maryland's Global Terrorism Database II, this paper first provides information on the nature of terrorist incidents in India in the period 1998-2004: the Indian states that were worst affected by terrorist incidents and fatalities; the terrorist groups responsible for such incidents and their modus operandi. Next, the paper focuses on the issue of fatalities from terrorist incidents. It inquires into the extent to which the number of fatalities following an incident was influenced by the type of attack (bombings, armed assault, etc.) and the extent to which it was influenced by the type of terrorist group. By examining the number of fatalities resulting from terrorist attacks in India, the paper disentangles the influence on this number of attack type and attack group. Lastly, the paper applies Atkinson's concept of equality-adjusted income to terrorism to arrive at the concept of equality-adjusted deaths from terrorist incidents: in order to avoid spectacular incidents resulting in the loss of a large number of lives—as in New York on September 11, 2001 and in Mumbai 26-29 November 2008—“society” might be prepared to tolerate “low-grade” terrorism which resulted in a larger number of deaths in total but avoided a large number of deaths from a single iconic incident.

This study examines a comprehensive data set of all terrorist activities that directly affected Americans between 1973 and 2003, exploring the reaction of hospitality stocks to these events. Hospitality stocks’ returns following terrorist events are well in excess of those experienced by the rest of the stock market, beating the market by 10 to 15 percent per annum. These results persist despite controls for the type of event, number of casualties, location of the event, changes in market risk, and resulting impacts on room demand and average daily rates. The most severe one hundred events, after an initial negative reaction, are followed by returns nearly four times larger than those of the average event. Findings are consistent with sentiment playing a substantial role in hospitality stock returns.

The question of whether democratic institutions facilitate terrorist activities is a controversial one in current scientific studies of terrorism. Although the "rule of law" is an essential institutional pillar of any mature democracy, its direct effect on domestic and international terrorism remains unexplored. Conceiving democratic rule of law as the coexistence of effective and impartial judicial systems and citizens’ recognition of the law as legitimate, the author presents a causal explanation in which a high-quality rule of law is considered to dampen ordinary citizens’ opportunity and willingness to engage in political violence, protecting democracies from becoming victims of terrorism. Built on a cross-sectional, time-series data analysis of 131 countries during the period from 1984 to 2004, the author finds that, ceteris paribus, maintaining a sound rule of law notably reduces the likelihood of any type of terrorist events. In short, the rule of law instantiated in democratic institutions provides a formidable bulwark against terrorism.

Motivated by the literature on investor sentiment and assuming that terrorist activity influences investor mood, in this paper we explore whether terrorism exerts a significant negative impact on daily stock market returns in a sample of 22 countries. The employed empirical specifications are based on flexible versions of the World CAPM, allowing for autoregressive conditional heteroscedasticity. The results suggest that terrorist activity leads to significantly lower returns on the day a terrorist attack occurs. In addition, the negative effect of terrorist activity is substantially amplified as the level of psychosocial effects increases. On the one hand, this evidence sheds light on the underlying mechanism via which terrorism affects stock markets while on the other hand, it provides further empirical support for the sentiment effect.

Using data that combines information from the Federal Aviation Administration, the RAND Corporation and the GTD, we are able to examine trends in 1,101 attempted aerial hijackings that occurred around the world from 1931 to 2003. We have especially complete information for 828 hijackings that occurred before 1986. Using a rational choice theoretical framework, we use continuous-time survival analysis to estimate the impact of several major counterhijacking interventions on the hazard of differently motivated hijacking attempts and logistic regression analysis to model the predictors of successful hijackings. Some of these interventions use certainty-based strategies of target hardening to
reduce the perceived likelihood of success. Others focus on raising the perceived costs of hijacking by increasing the severity of punishment. We also assess which strategies were most effective in deterring hijackers whose major purpose was related to terrorism. We found support for the conclusion that new hijacking attempts were less likely to be undertaken when the certainty of apprehension was increased through metal detectors and law enforcement at passenger checkpoints. We also found that fewer hijackers attempted to divert airliners to Cuba once that country made it a crime to hijack flights. Our results support the contagion view that hijacking rates significantly increase after a series of hijackings closely clustered in time—but only when these attempts were successful. Finally, we found that the policy interventions examined here significantly decreased the likelihood of nonterrorist but not that of terrorist hijackings. Journal Website

This article devises a method to separate the Global Terrorism Database (GTD) into transnational and domestic terrorist incidents. This decomposition is essential for the understanding of some terrorism phenomena when the two types of terrorism are hypothesized to have different impacts. For example, transnational terrorism may have a greater adverse effect than domestic terrorism on economic growth. Moreover, the causes of the two types of terrorism may differ. Once the data are separated, we apply a calibration method to address some issues with GTD data—namely, the missing data for 1993 and different coding procedures used before 1998. In particular, we calibrate the GTD transnational terrorist incidents to ITERATE transnational terrorist incidents to address GTD’s undercounting of incidents in much of the 1970s and its overcounting of incidents in much of the 1990s. Given our assumption that analogous errors characterize domestic terrorist events in GTD, we apply the same calibrations to adjust GTD domestic incidents. The second part of the article investigates the dynamic aspects of GTD domestic and transnational terrorist incidents, based on the calibrated data. Contemporaneous and lagged cross-correlations for the two types of terrorist incidents are computed for component time series involving casualties, deaths, assassinations, bombings, and armed attacks. We find a large cross-correlation between domestic and transnational terrorist incidents that persists over a number of periods. A key finding is that shocks to domestic terrorism result in persistent effects on transnational terrorism; however, the reverse is not true. This finding suggests that domestic terrorism can spill over to transnational terrorism, so that prime-target countries cannot ignore domestic terrorism abroad and may need to assist in curbing this homegrown terrorism.

Despite the centrality of situational variables to crime theories, they remain uncommon in criminology. Based on the hypotheses drawn from the literature on situational determinants of crime, we examine whether aerial hijackings perpetrated by terrorists are situationally distinct from other aerial hijackings. We define terrorist hijackings as those that include threatened or actual use of illegal force or violence to attain a political, economic, religious or social goal through fear, coercion, or intimidation. Other aerial hijackings include those perpetrated for transportation or extortion purposes. Using a newly updated dataset, we examined 1,019 aerial hijackings that occurred around the world from 1948 to 2007, out of which we classified 122 as terrorism. Results provide strong support for the argument that situational factors measuring organizational resources distinguish terrorist from non-terrorist aerial hijackings, and partial support for the argument that situational factors measuring publicity distinguish these events.

This article investigates the adverse effects of domestic and transnational terrorism on income per capita growth for 51 African countries for 1970–2007, while accounting for cross-sectional (spatial) dependence and conflict (i.e. internal conflicts and external wars). The findings of the fixed-effects panel estimator suggest that transnational terrorism has a significant, but modest, marginal impact on income per capita growth. These results hold for two different terrorism event datasets. However, domestic terrorist events do not affect income per capita growth. Our findings differ from those in an earlier study on the impact of transnational terrorism on African growth, because we uncover a much more moderate effect. In our study, regional impacts and terrorism–conflict interactions effects are also distinguished. Moreover, our sample countries and period are more extensive. Our article contains a host of robustness checks involving macroeconomic and political variables that find virtually identical results. Alternative terrorist variables are also used, with little qualitative change in the findings. The absence of a domestic terrorism impact is surprising because there were many more domestic than transnational terrorist incidents in Africa. To promote growth, host and donor countries must direct scarce counter-terrorism resources to protect against transnational terrorism in particular. The modest impact of transnational terrorism on African growth means that developing countries’ economies have been more resilient to terrorism than has been generally thought.

With the increase of terrorist activity around the world, it has become more important than ever to analyze and understand these activities over time. Although the data on terrorist activities are detailed and relevant, the complexity of the data has rendered the understanding and analysis difficult. We present a visual analytical approach to effectively identify related entities such as terrorist groups, events, locations, etc. based on a 2D layout. Our methods are based on sequence comparison from bioinformatics, modified to incorporate the element of time. By allowing the user the freedom to link entities by their activities over time, we provide a new framework for comparison of event sequences. Our scoring mechanism is robust and flexible, giving the user the flexibility to define the extent to which time is considered in aligning entities. Incorporated with high interactivity, the user can efficiently navigate through tens of thousands of records recorded in over a hundred dimensions of data by choosing combinations of categories to examine. Exploration of the terrorist activities in our system reveals relationships between entities that are not easily detectable using traditional methods.

Despite the growth in research examining direct economic impacts of terrorism, the indirect impact of terrorism on the stability of local economies has generally been overlooked. Using panel data regression models and the GTD, we examine the impact of terrorism on employment and business outcomes in Italy from 1985 to 1997. We find that terrorist attacks reduce the number of firms and employment in the year following an attack. By disaggregating net outcomes into their component gross flows, we also find that these impacts are primarily attributable to reduced business formations and expansions. Journal Website

In this paper we examine the trajectories of two Armenian terrorist groups: the Armenian Secret Army for the Liberation of Armenia (ASALA) and the Justice Commandos of the Armenian Genocide (JCAG). Both groups began in the mid-1970s and by the early 1980s had become extremely active. However, shortly afterwards, attacks and fatalities attributed to ASALA and JCAG plummeted and by 1988 both groups had effectively disintegrated. The pivotal historical event in our analysis is an especially brutal attack on Paris’s Orly Airport in 1983 which we believe undermined the legitimacy of ASALA among its supporters in the Armenian Diaspora and in the West. We use data from the Global Terrorism Database (GTD) from 1975 to 1988 as well as extensive qualitative evidence to examine these issues. Based on Cox proportional hazard models, we find that both total ASALA attacks and ASALA attacks on non Turkish targets significantly increased until the Orly incident, but significantly decline thereafter. Although JCAG was not involved in the Orly bombing and in general had a much more disciplined approach, JCAG attacks also declined rapidly following Orly. The results suggest that when a terrorist organization depends heavily on a Diaspora, over-reaching in terrorist targeting offers a strong opening for discrediting terrorism as a tactic, even discrediting terrorists who have not over-reached. [Journal Website](http://www.isr.anu.edu.au/)

We analyze the determinants of the origin of domestic and international terrorism in a large panel data set of 159 countries spanning from 1970 to 2007. We show that terror increases with GDP per capita, a higher polity score measuring a more open and competitive political system and experiences of domestic conflict, anarchy and regime transitions. Our evidence thus contradicts the notion that terrorism is rooted in economic deprivation or that strongly autocratic regimes breed more terrorists. Rather we show that weak or failing states are an incubator for terrorism. We also show that the causes of domestic terror and international terror are similar.

Greece has over the years faced serious security challenges from domestic as well as transnational terrorist activity. This paper examines empirically the effectiveness of counter-terrorism policy and particularly it focuses on current and investment expenditure on domestic security and public order. Using annual budget data for the 1974–2004 period, it investigates whether current and investment spending by the Ministry of Public Order has been an effective policy measure to counter terrorism. The results seem to suggest that such investment has at best a weak negative impact on internal terrorist actions. The main policy implication of this finding is that investing in counter-terrorist infrastructure and equipment can potentially prove to be an effective policy measure in the fight against terrorism. This, however, may be conditional upon a number of other factors including other anti-terrorist measures such as legislation or how efficiently such expenditure is used.

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by [mindtouch](http://www.mindtouch.us)

The editorial introduction of the special issue of Criminology and Public Policy on “Homeland Security and Terrorism” argues that out of the three major crime-related political wars: the war on crime, drugs, and terrorism, academic criminology was far more engaged in the first two than in the third one. However, the relatively small number of criminologists active in terrorism research has begun to change in recent years. The editorial introduces the articles and policy essays included in the special issue. The articles are grounded in empirical data and rely extensively on criminological theories. Finally the editorial argues that although the study of terrorism has started to attract the attention of academic criminology, a greater involvement is required.

Social and behavioral research on terrorism has expanded dramatically. However, theoretical work that incorporates terrorism and collection of valid data on it has lagged behind theoretical work on other criminological subjects. Theorizing has been dominated by deterrence perspective. Threats of severe consequence for terrorist acts in general show little promise, but there is evidence that increasing the certainty of consequence works in some situations. Research on terrorism will be improved if it moves beyond deterrence to include concepts drawn from legitimacy, strain, and situational perspectives. Limitations of traditional criminology data sources for studying terrorism have encouraged the developments of open-source-event databases. The most comprehensive when this article was being prepared was created by combining the Global Terrorism Database with RAND-MIPT data, documents more than 77,000 terrorist incidents from 1970 to 2006. Attacks peaked in the early 1990s and then declined substantially until 9/11. They have since substantially increased. The regional concentration of terrorism has moved from Western Europe in the 1970s to Latin America in the 1980s, to the Middle East and Persian Gulf in the twenty-first century. Despite the enormous resources devoted to countering terrorism, surprisingly little empirical information is available on which strategies are most effective.

The purpose of this analysis was to provide an exploratory look at a recently computerized database, examining the interplay between nonstate actors, terrorism, and WMD. In this brief overview, we have concentrated on the following risk factors: (1) previous use of WMD, (2) a history of willingness to launch attacks outside of the country of origin, (3) willingness to kill large numbers of people, and (4) attempts to achieve maximum lethality. Along the way, we have identified certain groups that fill these criteria and thus will be candidates for mass impact terrorism in the future. In short, although making no statistically formulated arguments, the data discussed here nonetheless serve as a point of departure for a better understanding of a host of issues of concern in both the academic and policy fields. Journal Website

Compared to most types of criminal violence, terrorism poses special data-collection challenges. In response, there has been growing interest in open-source terrorist event data bases. One of the major problems with these data bases in the past is that they have been limited to international events—those involving a national or group of nationals from one country attacking targets physically located in another country. Past research shows that domestic incidents greatly outnumber international incidents. In this paper we describe a previously unavailable open source data base that includes some 70,000 domestic and international incidents since 1970. We began the Global Terrorism Database (GTD) by computerizing data originally collected by the Pinkerton Global Intelligence Service (PGIS). Following computerization, our research team has been working for the past two years to validate and extend the data to real time. In this paper, we describe our data collection efforts, the strengths and weaknesses of open source data in general and the GTD in particular, and provide descriptive statistics on the contents of this new resource. Journal Website

As international concern about terrorism has grown, researchers and policymakers have increasingly sought to understand terrorism by looking at the social, economic, and political characteristics of countries. Lafree, Dugan, and Fahey examine connections between a newly available measure of terrorist attacks-the Global Terrorism Database (GTD) covering the period between 1970 and 1997-and state failure, defined by the Political Instability Task Force as including "civil conflicts, political crises, and massive human rights violations that are typically associated with state breakdown." Book Website

Terrorism is a form of crime. Yet compared to most types of crime, terrorism poses unique data collection challenges. As a result, even basic descriptive questions about terrorism have been difficult or impossible to answer: What are the long term trends in terrorist attacks? Is the number of fatalities associated with terrorist attacks increasing over time? What types of attacks are most common? What types of weapons do terrorists use most frequently? How long do terrorist groups last? In this chapter we analyze newly available data from the Global Terrorism Database (GTD) to provide a descriptive account of more than 82,000 domestic and international terrorist attacks that occurred between 1970 and 2004. We provide detailed information on global and country-level terrorism trends, regional characteristics of terrorism, and characteristics of the major groups that have employed terrorist methods. This chapter is meant to provide an overview of the characteristics of global terrorism. We show that many common stereotypes about terrorism receive little support. To place terrorism in a global political context, we include an analysis that links terrorist attacks to political characteristics of nations concentrating especially on level of democratization and state failures. We also examine how terrorism rates compare to more common forms of crime. We conclude with a discussion about important research questions for the future. Book Website

Although the research literature on terrorism has expanded dramatically since the 1970s, with few exceptions little of this work has been done by criminologists or has appeared in criminology journals. This is surprising because breaking of laws and reactions to the breaking of laws have long been central concerns of criminology and terrorism is closely related to both of these concerns. In this paper we compare crime and terrorism in terms of conceptualization, data collection and methodology. In general we find many similarities and even though there are important conceptual and methodological differences, many of these are similar to the familiar tension that exists between general criminology and specialized areas of study such as organized crime, hate crime or juvenile gangs. In short, we conclude that criminological theory, data collection, and methodological approaches are highly relevant to terrorism research and that applying criminological methods to the study of terrorism could rapidly increase our knowledge of terrorism and our understanding of its causes and consequences.

Criminologists since Becarria and Bentham have been concerned with predicting how governmental attempts to maintain lawful behavior affect subsequent rates of criminal violence. In this paper we build on prior research to argue that governmental responses to a specific form of criminal violence—terrorism—may produce both a positive deterrence effect (i.e., reducing future incidence of prohibited behavior) but also a negative backlash effect (i.e., increasing future incidence of prohibited behavior). Deterrence-based models have long dominated both criminal justice and counter terrorist policies on responding to violence. They maintain that an individual's prohibited behavior can be altered by the threat and imposition of punishment. By contrast, research on backlash models applied to either criminal justice or counter terrorist policies are less common and more theoretically scattered. Nevertheless, there is substantial support for such arguments from research on counter terrorism, from criminology research on labeling, legitimacy and defiance, and from the psychological literature on social power and decision making. In this paper we identify six major British strategies aimed at reducing political violence in Northern Ireland from 1969 to 1992 and then use Cox proportional hazard models to estimate the impact of these interventions on the risk of new attacks. In general, we find the strongest support for backlash models. The only support for deterrence models was a military surge called Operation Motorman which showed significant declines in the risk of new attacks. The results underscore the importance of considering the possibility that anti-terrorist interventions might increase as well as decrease subsequent violence. [Journal Website](http://semanticommunity.info/Data_Science/Global_Terrorism_Database) Updated: Sat, 19 Sep 2015 05:15:30 GMT

Rational choice perspectives maintain that seemingly irrational behavior on the part of terrorist organizations may nevertheless reflect strategic planning. In this paper we examine spatial and temporal patterns of terrorist attacks by the Spanish group ETA between 1970 and 2007. Our analysis is guided by a public announcement by ETA in 1978 that the group would shift from emphasizing attacks in the Basque territory to instead launch attacks more widely in the hopes of exhausting the Spanish government and forcing it to abandon the Basque territory. This announcement suggests that prior to the end of 1978 ETA attacks were based mostly on controlling territory in the Basque region that they hoped to rule; and after 1978 the organization decided to instead undertake a prolonged war of attrition. Accordingly, we argue that before the end of 1978 ETA was mostly perpetrating control attacks (attacking only within the Basque territories)
and that the diffusion of attacks between provinces was mostly contagious (spreading contiguously). After the 1978 proclamation, we argue that the attack strategy shifted toward attrition (attacking in areas outside of the Basque territories) and that the attacks were more likely to diffuse hierarchically (spreading to more distant locations). As predicted, we find that after ETA moved toward a more attrition based attack strategy, subsequent attacks were significantly more likely to occur outside the Basque region and to target non-adjacent regions (consistent with hierarchical diffusion). We also find that hierarchical diffusion was more common when a longer time elapsed between attacks (a likely consequence of the fact that more distant attacks require more resources and planning) and that attacks against Madrid were unlikely to be followed immediately by more attacks on Madrid or surrounding provinces. After ETA announced a shift in policy, they maintained a highly dispersed attack strategy even during their period of decline. Using information about where and when prior attacks occurred could provide useful information for policy makers countering groups like ETA.

With some notable and mostly recent exceptions, criminologists have been slow to study terrorism and responses to terrorism. In this essay, we provide evidence instead for the argument that important policy reasons exist for criminologists to be involved in the fight against terrorism. We consider ways that criminology and criminal justice can be of direct and indirect assistance in the fight against terrorism. Finally we propose that as a science, criminology should play a major role in establishing best practices for the processing of those accused of terrorism and to provide etiological theories and research methods for understanding terrorism.

LaFree, Gary and Erin Miller. 2009. "Desistance from Terrorism: What Can We Learn from Criminology?" *Dynamics of Asymmetric Conflict*. 1:203-230

In recent years an increasing number of researchers have observed that there are far fewer studies of how terrorism ends than how it begins. In criminology the issue of how crime ends has been shaped by discussions of desistance, the prolonged or permanent cessation of criminal behavior. We begin this essay with a brief review of research on desistance in criminology, considering first the conceptual challenges of desistance research and then reviewing major theoretical frameworks and empirical findings from criminology that might help inform an understanding of desistance from terrorism. We conclude with a discussion of the implications of desistance research in criminology for research on terrorism at the individual- and group-level and identify several objectives for such a research agenda. Journal Website

Despite growing international concern about terrorism, until recently, very little was known about worldwide risk patterns for terrorist attacks. In this paper, we are especially interested in determining the extent to which terrorism is concentrated at the country level over time and whether different measures of terrorism (total, attributed and fatal attacks) yield similar results. Traditional sources of crime data—official police records and victimization and self-report crime surveys—typically exclude terrorism. In response, there has been growing interest in terrorist event databases. In this research, we report on the most comprehensive of these databases to date, formed by merging the Global Terrorism Database maintained by the START Center with the RAND-MIPT database. We use a statistical method called semi-parametric group-based trajectory analysis to examine 73,961 attacks in 206 countries and territories from...
1970 to 2006. Our results confirm that terrorist attacks, like more common crimes, are highly concentrated across specific countries and these concentrations are fairly stable over time. Ten countries account for 38 per cent of all terrorist attacks in our data since 1970; 32 countries account for more than three-quarters of all attacks. The trajectory analysis also reveals a rapidly rising new terrorist threat concentrated especially among countries in South and Southeast Asia, the Middle East and Africa.

The existence of violent crime hot spots, both in neighborhoods and countries, which remain relatively stable over time, has been fairly well-established in the criminological literature. In this chapter, we ask if terrorism incidents are also concentrated in a relatively few number of countries and whether that concentration has remained stable over time. We use the Global Terrorism Database which includes 70,000 domestic and international terrorism incidents from 1970 to 1997. We use semi-parametric trajectory analysis to estimate and describe long term patterns of terrorism activity for all countries during the time span. In addition, we classify countries with similar patterns into groups which reflect the overall pattern of terrorism. Our results indicate that there are four trajectory groups in the data, each of which represents a distinct pattern of terrorism activity over time. Although the vast majority of countries experience relatively few numbers of terrorist incidents over time, a small percentage of countries account for the majority of terrorist incidents in our data. Moreover, the clustering of incidents at the country level remains stable over time. For example, countries in trajectory group four represent only 8% of countries in the data, however they accounted for 67% of all incidents between 1970 and 1997. We conclude that there is a substantial amount of concentration of terrorist incidents within particular countries, and this concentration is stable over time. This suggests that the policing of terrorism should not be conducted in a random manner; rather resources for combating terrorism ought to be concentrated in the places with the most terrorism. Book Website

While researchers began to assemble open-source terrorism event data bases in the late 1960s, until recently most of these data bases excluded domestic attacks. This is a particularly misleading exclusion for the United States: while the United States is often perceived to be the central target of transnational terrorism, the domestic attacks of the foreign groups targeting the United States are often ignored. We begin this paper with 53 foreign terrorist groups that have been identified by U.S. State Department and other government sources as posing a special threat to the United States. Using the Global Terrorism Database that includes both domestic and transnational terrorist attacks, we examine 16,916 attacks attributed to these groups between 1970 and 2004. We find that just over three percent of attacks by these designated anti-U.S. groups were actually directed at the United States. Moreover, 99 percent of the attacks that targeted the United States did not occur on U.S. soil, but were aimed at U.S. targets in other countries (e.g., embassies or multilateral corporations). We also find that over 90 percent of the non-U.S. attacks were domestic (nationals from one country attacking targets of the same nationality in the same country). We use group-based trajectory analysis to examine the different developmental trajectories of U.S. target and non-U.S. target terrorist strikes and conclude that four trajectories best capture attack patterns for both. These trajectories outline three terrorist waves, occurring in the 1970s, 1980s and the early twenty-first century, as well as a trajectory that does not exhibit wave-like characteristics but instead is characterized by irregular and infrequent attacks. Journal Website

Data collection of covert networks is an inherently difficult task because of the very nature of these networks. Researchers find it difficult to locate and access data relating to the structure and function of such networks in order to study this extreme social phenomenon. In addition, information collected by intelligence agencies and government organizations is inaccessible to researchers. To counter the information scarcity, we designed and built a database of terrorist-related data and information by harvesting such data from publicly available authenticated websites. The database was incorporated in the iMiner prototype tool, which makes use of investigative data mining techniques to analyze data. This paper will present the developed framework along with the form and structure of the terrorist data in the database. Selected cases will be referenced to highlight the effectiveness of the iMiner tool and its applicability to real-life situations.

Piazza, James and James Igoe Walsh 2010 "Physical Integrity Rights and Terrorism" *Political Science and Politics* 43: 411-414

Can states afford to protect human rights when facing a terrorist threat? Contemporary academic literature suggests that the answer to this question is no, concluding that states that afford their citizens basic political rights and civil liberties leave themselves more exposed to terrorist attacks (Piazza 2008; Wade and Reiter 2007; Pape 2003; Eubank and Weinberg 1994). American lawmakers agree. Both the Bush and Obama administrations regard the curtailment of physical integrity rights as a necessary element of effective counterterrorism policy. The Bush administration responded to the terrorist attacks of September 11, 2001, with policies permitting indefinite detention, extraordinary rendition, use of physically abusive interrogation practices, and increased and largely unchecked surveillance and wiretapping of suspected terrorists. Although it banned abusive interrogation and announced plans to close the detention facility at Guantanamo Bay, the Obama administration has maintained the practice of wiretapping, reserved the option of rendition, and dramatically increased unmanned drone attacks against suspected terrorists in Pakistan, which often results in civilian casualties. Both presidents have claimed that these policies are necessary to keep Americans safe from terrorism (Hosenball 2009; "Bush Defends Policy on Terror Detainees" 2005).

Recent increases in terrorist activity around the world have made analyzing and understanding such activities more critical than ever. With the help of organizations such as the National Consortium for the Study of Terrorism and Responses to Terrorism (START), we now have detailed historical information on each terrorist event around the world since 1970. However, due to the size and complexity of the data, identifying terrorists’ patterns and trends has been difficult. To better enable investigators in understanding terrorist activities, we propose a visual analytical system that focuses on depicting one of the most fundamental concepts in investigative analysis, the five W's (who, what, where, when, and why). Views in our system are highly correlated, and each represents one of the W's. With this approach, an investigator can interactively explore terrorist activities efficiently and discover reasons of attacks (why) by identifying patterns temporally (when), geo-spatially (where), between multiple terrorist groups (who), and across different methods or modes of attacks (what). By coupling a global perspective with the details gleaned from asking these five questions, the system allows analysts to think both tactically and strategically. *Journal Article*

This paper describes the spatio-temporal trends in terrorist incidents in the United States, from 1970 through 2004. Utilizing the Global Terrorism Database (GTD) and ancillary data, we examine both the frequency of incidents and their characteristics: location, target type, attack type, weapon type, and perpetrator group. While the frequency of terrorist incidents has declined since the 1970s, there still is significant activity nationwide. Instead of urban-rural or West Coast-East Coast divisions, the pattern is a more complex mosaic based on group identity, target, and weapon type. We conclude that there is an explicit geography of terrorism, one that is quite decentralized and highly localized.

Democratic regimes have been linked to terrorism for contending reasons, with some scholars claiming democracy increases terrorism and others claiming it decreases terror. Corroborating evidence has been used for both relationships leading to the following puzzle: why do some democratic regimes seem to foster terrorism while others do not? We offer an explanation based on Tsbelis’s veto players theory. Beginning with the assumption that terror groups want to change government policy, we argue that the more veto players present in a political system, the more likely the system is to experience deadlock. Given the inability of societal actors to change policies through nonviolent and institutional participation, these systems will tend to generate more terror events. We also explore different methods for estimating terrorism models. We identify several ways to match the data with the proper statistical estimator and discuss implications for terrorism research. Finally, we use new data from the Global Terrorism Database (GTD) that was previously unavailable. These data allow us to use different operational definitions of terrorism and to identify homegrown terror events.

Frequently Asked Questions

Source: http://www.start.umd.edu/gtd/faq/

Can I use the GTD for my research/analysis/project?

Yes, we encourage researchers, analysts, and scholars to use the GTD in their work. Users can download the latest dataset by filling out the brief [GTD Contact Form](http://www.start.umd.edu/gtd/contact-form/) and selecting “Download full GTD dataset” from the Action drop-down menu. Use of the data signifies your agreement to our [Terms of Use](http://www.start.umd.edu/gtd/terms-of-use/), which include properly citing the GTD as a data source, and refraining from redistributing or republishing the raw data for commercial or non-commercial use.

Why does the data set end in 2011?

GTD collection beyond 2011 is ongoing and the website is updated annually. We expect to release the 2012 data in Fall 2013. Please [join START’s mailing list](http://www.start.umd.edu/gtd/contact-form/) to be notified when the GTD is updated.
Why are the data for 1993 missing?

The original PGIS data, upon which the 1970-1997 GTD data are based, consisted of hard-copy index cards, which were subsequently coded electronically by START researchers. Unfortunately, the set of cards for 1993 was lost prior to PGIS handing the data over to START. Country-level statistics for 1993, including number of incidents, number of fatalities, number injured, number of U.S. fatalities, and number of U.S. injured were recovered from a PGIS Risk Assessment Report for 1993. These figures are available in the appendix of the GTD Codebook.

Why doesn't GTD have a single definition of terrorism?

In the absence of a universally accepted definition of terrorism, GTD uses several coded criteria to cover a broad range of definitions of terrorism through a combination of inclusiveness and filtering. The goal is to have a data set that is useful to as many interested users as possible.

Please see our Methodology Page and GTD Codebook for more details.

I came across an incident in the database that I do not believe is terrorism. Why was it included?

While the GTD inclusion criteria offer a comprehensive definition of terrorism, we encourage users to take advantage of the GTD's flexibility to restrict the data according to their definitional preferences. This includes filtering search results based on whether the coder noted some uncertainty whether an incident meets all of the criteria for inclusion ("Doubt Terrorism Proper," available for post-1997 cases only). Also, users can filter search results based on which of the following three criteria are met (available for all cases):

Criterion I: The act must be aimed at attaining a political, economic, religious, or social goal.

Criterion II: There must be evidence of an intention to coerce, intimidate, or convey some other message to a larger audience (or audiences) than the immediate victims.

Criterion III: The action must be outside the context of legitimate warfare activities.

Please see our Methodology Page and GTD Codebook for more details.

I found a factual error or a case missing from the database. How did this happen?

While every effort is made for each incident to corroborate facts from multiple independent sources and to eliminate errors through a systematic review process, the magnitude of the database (over 104,000 discrete incidents) means that occasionally an error will evade detection and appear in the database or a valid incident will not be recorded. In these cases, we rely on users who become aware of such an error to contact us and let us know.
Does the GTD include foiled and failed plots or threats to attack?

Although the GTD does include failed attacks, it does not include foiled or failed plots, the distinction being that the attack must actually be attempted to qualify for inclusion in the database. Likewise, the GTD does include attacks in which violence is threatened as a means of coercion, but does not include threats to attack where no action is taken.

Does the GTD include insurgency?

To some degree, the GTD does include acts that occur either during a specific insurgency or that closely resemble an insurgent attack against a military target. Without clear definitions of terrorism and insurgency in the literature these types of actions can overlap, with insurgent organizations using violence against non-combatants alongside attacks directed at combatants. While terrorism as a tactic has been used within a number of insurgent campaigns, the GTD should not be viewed as a comprehensive collection of insurgent attacks.

Does the GTD include incidents of state terrorism?

No, the GTD is limited to acts of non-state terrorism. One of the three necessary criteria for inclusion is that there must be sub-national perpetrators.

Please see the GTD Codebook for more details.

Who makes the decisions about what to include as an incident?

The basic criteria were formulated by the GTD Advisory Board, and were reflected in the data collection process. In practice, individual data collectors decide whether a case they are working on fulfills these criteria, and this decision is reviewed by GTD supervisory staff. In cases where determination is difficult, the decision is made by the senior GTD management. If uncertainty persists, exceptionally difficult cases can be referred to the GTD Advisory Board for discussion and adjudication.

How do I get access to the raw data?

Users can download the latest dataset by filling out the brief GTD Contact Form and selecting “Download full GTD dataset” from the Action drop-down menu. United States government officials can request a copy of the GTD data files from the latest release on compact disc through the GTD Contact Form as well.

Please join the START mailing list to receive a notification when more recent versions of the data become available.

Who funds the database?

The initial collection of GTD data was carried out by the Pinkerton Global Intelligence Services (PGIS) between 1970 and 1997 and was donated to Gary LaFree at the University of Maryland. Computerizing and validating the original GTD data from 1970 to 1997 was funded by a grant from the National Institute of Justice (PIs Gary LaFree and Laura Dugan; grant number: NIJ2002-DT-CX-0001) and thereafter as part of the START Center of Excellence by the Department of
Is there a methodological reason for the decline in the data between 1997 and 1998?

While efforts have been made to assure the continuity of the data from 1970 to the present, users should keep in mind that the data collection was done as events occurred up to 1997, retrospectively between 1998 and 2007, and again concurrently with the events after 2008. This distinction is important because some media sources have since become unavailable, hampering efforts to collect a complete census of terrorist attacks between 1998 and 2007. Thus, users should note that differences in levels of attacks before and after 1997 may be at least partially explained by differences in data collection; and researchers should adjust for these differences when modeling the data.

I need to provide GTD data for an academic journal replication archive. Do I need permission?

Yes. The Terms of Use for the GTD specifically prohibit the republication of the GTD data in any manner on any publicly-available website. This includes journal replication archives and institute / research center websites, among others. If an academic publication requires the posting of GTD data in the replication archive, please contact GTD staff to obtain permission to post the GTD data.
Can the GTD be used as a source of information on legal dispositions of criminal charges?

No. Statistical information contained in the Global Terrorism Database is based on reports from a variety of open media sources. Information is not added to the GTD unless and until we have determined the sources are credible. Users should not infer any additional actions or results beyond what is presented in a GTD entry and specifically, users should not infer an individual associated with a particular incident was tried and convicted of terrorism or any other criminal offense. If new documentation about an event becomes available, an entry may be modified, as necessary and appropriate.

Terms of Use

General Terms and Conditions of Use for the Global Terrorism Database (GTD)

Use of the data signifies your agreement to the following terms and conditions.

1. Definitions: Within this section:
 1. "GTD" will refer to the Global Terrorism Database produced by the National Consortium for the Study of Terrorism and Responses to Terrorism. This includes the data and codebook, any auxiliary materials present, and the World Wide Web interface by which the data are presented.
 2. "START" will refer to the National Consortium for the Study of Terrorism and Responses to Terrorism, a United States Department of Homeland Security Center of Excellence based at the University of Maryland.
 3. "USER" denotes the individual or set of individuals who access the GTD, i.e. the data, codebook, any auxiliary materials, and the World Wide Web interface by which the data are presented.
 4. "GTD representatives" denotes any senior management staff of START, and any employee or representative of said organization whom senior management staff designate to represent START in dealings with the USER.

2. Usage Rights: Pursuant to this agreement, START grants the USER the non-exclusive, non-guaranteed right to search, browse, and view all contents in the GTD World Wide Web interface.

3. Authorship: All contents of the GTD were assembled by representatives of START and do not purport to reflect the official position or data collections of the Department of Homeland Security or any other agency of the United States government.

4. Acknowledgement: All information sourced from the GTD should be acknowledged by the USER and cited as follows: "National Consortium for the Study of Terrorism and Responses to Terrorism (START). (2012). Global Terrorism Database [Data file]. Retrieved from http://www.start.umd.edu/gtd"

5. Unauthorized Reconstruction of the Data: The GTD website allows the USER to download the entire GTD dataset in a portable file format through the Download page. In addition, the GTD's World Wide Web interface
allows the USER to download information on up to 1000 incidents at a time. However, the USER is not permitted to use this feature or any other method to reconstruct the original data set upon which the GTD interface is based. This includes the compilation of more than 1000 incidents from the GTD interface by either manual or automated methods.

6. **Unauthorized Publication of the Data:** No part of the GTD may be republished on any website or accessible for public download in any format without the express permission of a GTD staff member. In addition, no part of the GTD may be distributed for any commercial purpose, nor with the intent that the data be used in any commercial enterprise, without the express permission of a GTD staff member. START reserves the right to withhold this permission.

7. **Penalties:** Penalties for failure to comply with the terms of this agreement may result in loss of access to the GTD and the forfeiture of user privileges, in addition to any other appropriate legal remedies.

8. **Limitation of Liability:** Limitation of Liability: Although every reasonable effort has been made to check sources and verify facts, START cannot guarantee that accounts reported in the open literature are complete and accurate. START shall not be held liable for any loss or damage caused by errors or omissions or resulting from any use, misuse, or alteration of GTD data by the USER. The USER should not infer any additional actions or results beyond what is presented in a GTD entry and specifically, the USER should not infer an individual associated with a particular incident was tried and convicted of terrorism or any other criminal offense. If new documentation about an event becomes available, an entry may be modified, as necessary and appropriate.

9. **Multimedia Copyright:** Images and other multimedia files contained in the GTD are held under copyright to various parties. No multimedia files from the GTD may be removed, reproduced, or disseminated without express written permission from the copyright holder.

10. **Termination of Rights:** The GTD developers reserve the right to remove access from any particular IP address or set of IP addresses, or to remove the database entirely from public access, at their discretion. In such an event, all USER rights granted in this document are terminated.

Citing GTD

Source: http://www.start.umd.edu/gtd/terms-of-use/CitingGTD.aspx

All information sourced from the GTD should be acknowledged by the USER and cited as follows:

Contact
Download the GTD or Contact GTD Team

Source: http://www.start.umd.edu/gtd/contact/

My Note: I submitted this and got the download ZIP file.

We welcome questions and feedback from users. For the quickest answers, please consult our FAQ page to see if your question has already been addressed before submitting it using the form below.

Media Inquiries

Source: http://www.start.umd.edu/gtd/contact/MediaInquiries.aspx

All GTD-related media inquiries should be directed towards:

Jessica Rivinius, Communications Director
Email: rivinius@start.umd.edu
Phone: 301.405.6600

Distribution Letter

Source: PDF

October 9, 2012

Per the request you submitted via the online form of the Global Terrorism Database (GTD), please find enclosed a CD-ROM that includes the following files:

- GTD 1970-2011 data file, including data on terrorist attacks between 1970 and 2011
- GTD 1970-1990 data file, including data on terrorist attacks between 1970 and 1990
- GTD 1991-2011 data file, including data on terrorist attacks between 1991 and 2011
- GTD 1993 data file, including cases collected in an effort to reconstruct the missing 1993 data (see below for additional information)
- GTD codebook, explaining the variables and coding schema for the GTD
- Global Terrorism Database Terms of Use

Please note that the data in the first file is identical to the data in the second and third files. The second and third files are provided for users who require a limited number of rows per file.

Regarding the fourth file, users should be aware that prior to the transfer of the original GTD data from Pinkerton Global Intelligence Services (PGIS) to START, all records of terrorist attacks during 1993 were lost. Several efforts were made to recover these incidents from original news sources. Unfortunately, due to the challenges of retrospective data collection for events that happened more than fifteen years ago, the number of cases collected for 1993 is only 15% of the number reported by PGIS. As a
consequence we exclude all 1993 attacks from the GTD data to prevent users from misinterpreting the low frequency in 1993 as an actual count. However, we provide the reconstructed 1993 cases for those researchers who would find value in exploring these incidents. Together, with the PGIS recorded marginal counts for each country provided in the GTD codebook, analysts can use these data to interpolate values for the missing 1993 cases.

It is the policy of the Department of Homeland Security to protect the privacy of individuals. The information you have requested from the Global Terrorism Database may contain information related to specific individuals. DHS requires that you take every possible precaution to protect this information and that you use it for the purpose of advancing the understanding of terrorism. If you encounter any information about yourself that you believe to be inaccurate or wish to have removed from the database, please contact the project manager.

A web-based interface for the GTD, including additional information on the data and its usage, is available at http://www.start.umd.edu/gtd.

Thank you for your interest in the Global Terrorism Database. We hope that you find it to be a useful tool. If you encounter any problems with the enclosed CD or its contents, please contact the GTD team via email at gtd@start.umd.edu. We welcome your feedback on the data and its application to your work.

Sincerely,
Erin Miller
GTD Project Manager, START

3300 Symons Hall • College Park, MD 20742 • 301.405.6600 • http://www.start.umd.edu

Codebook

CODEBOOK: INCLUSION CRITERIA AND VARIABLES

October 2012

INTRODUCTION

This document reflects the collection and coding rules for the Global Terrorism Database (GTD), maintained by the National Consortium for the Study of Terrorism and Responses to Terrorism (START). It is the result of a deliberative and consultative process that was initially undertaken by the GTD Advisory Board primarily between January and May 2006. Subsequent revisions to this codebook have been made by GTD staff, with the guidance of the Advisory Board. Key changes, including the addition and removal of certain variables and values, are described below.

This codebook is divided into two broad areas. First, this introduction explains the origins of the GTD and key decisions made during the development of the GTD. Our goal is to be as transparent as possible regarding the data collection methodology, with a commitment to creating a highly comprehensive and consistent terrorism incident data set. We describe the GTD’s definition of terrorism, inclusion criteria, and other definitional filtering mechanisms. Because the GTD is a terrorism incident database, the introduction concludes by defining single incident determination.
Second, the codebook outlines the eight categories of variables that constitute the GTD and defines the possible values of the variables. These categories include the GTD ID, incident date, incident location, incident information, attack information, target/victim information, perpetrator information, perpetrator statistics, claims of responsibility, weapon information, casualty information, consequences, kidnapping/hostage taking information, additional information, and source information.

In addition, users familiar with the GTD’s Data Collection Methodology are aware that incidents of terrorism from 1993 are not present in the GTD because they were lost prior to START’s compilation of the GTD from multiple data collection efforts. Several efforts were made to recollect these incidents from original news sources. Unfortunately, due to the challenges of retrospective data collection for events that happened nearly 20 years ago, the number of 1993 cases for which sources were identified is only 15% of estimated attacks. As a consequence we exclude all 1993 attacks from the GTD data to prevent users from misinterpreting the low frequency in 1993 as an actual count. However, in an effort to ameliorate this gap, Appendix I provides country level statistics for incidents of terrorism for that year. These figures were obtained from an early report on the data compiled before the 1993 files were lost.

The Origins of the GTD

Introduction

The current GTD is the product of several phases of data collection efforts, each relying on publicly available, unclassified source materials. These include media articles and electronic news archives, and to a lesser extent, existing data sets, secondary source materials such as books and journals, and legal documents.

The original set of incidents that comprise the GTD occurred between 1970 and 1997 and were collected by the Pinkerton Global Intelligence Service (PGIS)—a private security agency. After START completed digitizing these handwritten records in 2005, we collaborated with the Center for Terrorism and Intelligence Studies (CETIS) to continue data collection beyond 1997 and expand the scope of the information recorded for each attack. CETIS collected GTD data for terrorist attacks that occurred from January 1998 through March 2008, after which ongoing data collection transitioned to the Institute for the Study of Violent Groups (ISVG). ISVG continued as the primary collector of data on attacks that occurred from April 2008 through October 2011.

Table: GTD Data Collection Phases by Collection Institution

<table>
<thead>
<tr>
<th>Dates of GTD Attacks</th>
<th>PGIS</th>
<th>CETIS</th>
<th>ISVG</th>
<th>START</th>
</tr>
</thead>
</table>
GTD staff based at START headquarters at the University of Maryland integrated and synthesized data collected across the entire 1970-2011 time span with the goal of ensuring that the definitions and methodology are as consistent as possible across all phases of data collection. In addition, GTD staff at START retroactively coded several key variables not originally available for the PGIS cases, conducted numerous quality control projects, and supplemented data collection efforts. These supplemental data collection efforts involve systematically comparing a variety of additional sources of terrorism incident data to the GTD to identify any missing events that satisfy GTD inclusion criteria. GTD staff research these missing events to identify primary sources of information and code the attack details for addition to the GTD.

Beginning with cases that occurred in November 2011, all ongoing GTD data collection is conducted by START staff at the University of Maryland. Additional information on the history and data collection methodology of the database can be found on the GTD website. Given the varied context of GTD data collection, users of the database should note the following general practices:

Legacy issues

The GTD now includes incidents of terrorism from 1970 to 2011, however a number of new variables were added to the database beginning with the post-1997 data collection effort. Wherever possible, values for these new variables were retroactively coded for the original incidents, however some of the new variables pertain to details that were not recorded in the first phase of data collection. For any newly added variables that were not retroactively coded and thus only exist for post-1997 cases and earlier events added through recent supplemental collection efforts the Codebook notes the following: Note: This field is presently only systematically available with incidents occurring after 1997.

Transparency

The criteria and coding system were designed to be completely transparent and available to all future users of the database. As such, the commitment was made to describe coding decisions wherever possible.

Inclusiveness

It was recognized at the outset that researchers and public officials ascribe to varying definitions of terrorism. Therefore the approach that was adopted was to collect and structure data such that it would be useful to as broad an audience as possible. The method chosen to achieve this was to err on the side of inclusiveness in our criteria, but to include in the database filtering mechanisms through which users can truncate the data set according to the definition of terrorism that meets their needs. In such scenarios, the user can filter the data according to specific components of established definitions of terrorism. These filtering methods are explored below.

Finally, this GTD Codebook supersedes prior codebooks. With only minor exceptions, however, the user will note that variables and variable values applied in the current GTD are consistent with those used in former versions of the GTD. The following exceptions exist:

Changes made in September 2012

- The addition of *latitude* and *longitude*, and geo-coding *specificity* for a select set of regions.
- The removal of the *situation of multi-party conflict* and *claim of responsibility confirmed* variables due to lack of definitional clarity and inconsistent coding.
- Changing *alternative designation* categories to improve the mutual exclusivity of categories. See below for new values; these changes are reflected in all cases for which this variable was collected.
• Adjustments to weapon subtype categories:
 ◦ Combined two categories “Knife” and “Sharp Object Other Than Knife” into one category “Knives and Other Sharp Objects”
 ◦ Added two new categories, “Dynamite/TNT” and “Sticky Bomb” under the heading of “Bombs/Dynamite/Explosives”

Changes made prior to September 2012
• The addition of “Unarmed Assault” as a value for the “Attack Type” variable.
• The addition of “Violent Political Parties” as a value for the “Target/Victim Type” variable.
• Due to the rarity of relevant incidents, the removal of “Agriculture” as a value for the “Target/Victim Type” variable. It is now subsumed under appropriate extant values.
• The coding of incidents that occurred in the West Bank and Gaza Strip as separate from Israel.
• The removal of the “Target/Victim Entity” variables (entity1, entity2, entity3) due to redundancy with “Target/Victim Type” variables (targtype1, targtype2, targtype3).
• The replacement of “Perpetrator Group(s) Suspected/Unconfirmed” (guncertain) with group-specific versions of the same variable (guncertain1, guncertain2, guncertain3).

These changes have been applied retroactively to all relevant GTD data.

GTD Definition of Terrorism and Inclusion Criteria
The GTD defines a terrorist attack as the threatened or actual use of illegal force and violence by a non-state actor to attain a political, economic, religious, or social goal through fear, coercion, or intimidation. In practice this means in order to consider an incident for inclusion in the GTD, all three of the following attributes must be present:

• The incident must be intentional – the result of a conscious calculation on the part of a perpetrator.
• The incident must entail some level of violence or threat of violence - including property violence, as well as violence against people.
• The perpetrators of the incidents must be sub-national actors. This database does not include acts of state terrorism.

In addition, at least two of the following three criteria must be present for an incident to be included in the GTD:

• Criterion 1: The act must be aimed at attaining a political, economic, religious, or social goal. In terms of economic goals, the exclusive pursuit of profit does not satisfy this criterion. It must involve the pursuit of more profound, systemic economic change.

• Criterion 2: There must be evidence of an intention to coerce, intimidate, or convey some other message to a larger audience (or audiences) than the immediate victims. It is the act taken as a totality that is considered, irrespective if every individual involved in carrying out the act was aware of this intention. As long as any of the planners or decision-makers behind the attack intended to coerce, intimidate or publicize, the intentionality criterion is met.

• Criterion 3: The action must be outside the context of legitimate warfare activities. That is, the act must be outside the parameters permitted by international humanitarian law (particularly the prohibition against deliberately targeting civilians or non-combatants).

Each of these latter three criteria filters can be employed by the user via the GTD’s Advanced Search Page.

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by mindtouch™ 73
Additional Filtering Mechanism: “Doubt Terrorism Proper?”

The inclusion criteria above are evaluated for each case to determine if it should be added to the GTD; however there is often definitional overlap between terrorism and other forms of crime and political violence, such as insurgency, hate crime, and organized crime. Likewise, for many cases there is insufficient or conflicting information provided in source documents to allow coders to make a clear determination regarding whether or not the inclusion criteria are met. Users of the GTD can further govern the parameters of their search results by employing an additional terrorism definitional filter.

The “Doubt Terrorism Proper” field records reservation, in the eyes of GTD analysts, that the incident in question is exclusively terrorism. Such uncertainty, however, was not deemed to be sufficient to disqualify the incident from inclusion into the GTD. Furthermore, such a determination of doubt is subsequently coded by GTD analysts as conforming to one of four possible alternative designations: 1) Insurgency/Guerilla Action; 2) Other Crime Type; 3) Intra/Inter-group conflict; or 4) Lack of Intentionality. As is the case with the criteria filters outlined above, the “Doubt Terrorism Proper” filter is available for use on the GTD’s Advanced Search Page. Note that the “Doubt Terrorism Proper” determination was only routinely made for incidents that occurred after 1997.

Single Incident Determination

Incidents occurring in both the same geographic and temporal point will be regarded as a single incident, but if either the time of occurrence of incidents or their locations are discontinuous, the events will be regarded as separate incidents.

Examples:

- **Four truck bombs explode nearly simultaneously in different parts of a major city.** This represents four incidents.

- **A bomb goes off, and while police are working on the scene the next day, they are attacked by terrorists with automatic weapons.** These are two separate incidents, as they were not continuous, given the time lag between the two events.

- **A group of militants shoot and kill five guards at a perimeter checkpoint of a petroleum refinery and then proceeds to set explosives and destroy the refinery.** This is one incident since it occurred in a single location (the petroleum refinery) and was one continuous event.

- **A group of hijackers diverts a plane to Senegal and, while at an airport in Senegal, shoots two Senegalese policemen.** This is one incident, since the hijacking was still in progress at the time of the shooting and hence the two events occurred at the same time in the same place.

If the information available for a complex event does not specify a time lag between, or the exact locations of, multiple terrorist activities, the event is a single incident. If any discontinuity in time or space is noted, the event is comprised of multiple incidents.

DATABASE VARIABLES

I. GTD ID and Date

GTD ID

(eventid)
Incidents from the GTD follow a 12-digit Event ID system.

• First 8 numbers – date recorded “yyymmdd”.
• Last 4 numbers – sequential case number for the given day (0001, 0002 etc). This is “0001” unless there is more than one case occurring on the same date.

For example, an incident in the GTD occurring on 25 July 1993 would be numbered as “199307250001”. An additional GTD case recorded for the same day would be “199307250002”. The next GTD case recorded for that day would be “199307250003”, etc.

In rare cases, corrections to the date of a GTD attack are made. In order to maintain stable Event ID numbers, date changes are not reflected in the Event ID.

Year
(iyear)
Numeric Variable
This field contains the year in which the incident occurred. In the case of incident(s) occurring over an extended period, the field will record the year when the incident was initiated.

When the year of the incident is unknown, this will be recorded as “0”.

Month
(imonth)
Numeric Variable
This field contains the number of the month in which the incident occurred. In the case of incident(s) occurring over an extended period, the field will record the month when the incident was initiated.

When the exact month of the incident is unknown, this will be recorded as “0”.

Day
(iday)
Numeric Variable
This field contains the numeric day of the month on which the incident occurred. In the case of incident(s) occurring over an extended period, the field will record the day when the incident was initiated.

When the exact day of the incident is unknown, the field is recorded as “0”.

Approximate Date
(approxdate)
Whenever the exact date of the incident is not known or remains unclear, this field is used to record the approximate date of the incident.

• If the day of the incident is not known, then the value for “Day” is “0”. For example, if an incident occurred in June 1978 and the exact day is not known, then the value for the “Day” field is “0” and the value for the “Approximate Date” field is “June 1978”.

• If the month is not known, then the value for the “Month” field is “0”. For example, if an incident occurred in the first half of 1978, and the values for the day and the month are not known, then the value for the “Day” and “Month” fields will both be “0” and the value for the “Approximate Date” field is “first half of 1978”.

Extended Incident?

(extended)

Categorical Variable

1 = "Yes" The duration of an incident extended more than 24 hours.
0 = "No" The duration of an incident extended less than 24 hours.

Date of Extended Incident Resolution

(resolution)

Numeric Date Variable

This field only applies if “Extended Incident?” is “Yes” and records the date in which the incident was resolved (hostages released by perpetrators; hostages killed; successful rescue, etc.)

II. Incident Information

Incident Summary

(summary)

Text Variable

A narrative summary of the incident, noting the "when, where, who, what, how, and why."

Note: This field is presently only systematically available with incidents occurring after 1997.

Inclusion Criteria

(crit1, crit2, crit3)

Categorical Variables

These variables record which of the inclusion criteria (in addition to the necessary criteria) are met. This allows users to filter out those incidents whose inclusion was based on a criterion which they believe does not constitute terrorism proper. Note that for
each of the criteria variables a case is coded as “1” if source information indicates that the criterion is met and “0” if source information indicates that the criterion is not met or that there is no indication that it is met.

Criterion 1: POLITICAL, ECONOMIC, RELIGIOUS, OR SOCIAL GOAL (CRIT1)

The violent act must be aimed at attaining a political, economic, religious, or social goal. This criterion is not satisfied in those cases where the perpetrator(s) acted out of a pure profit motive or from an idiosyncratic personal motive unconnected with broader societal change.

1 = "Yes" The incident meets Criterion 1.
0 = "No" The incident does not meet Criterion 1 or there is no indication that the incident meets Criterion 1.

Criterion 2: INTENTION TO COERCE, INTIMIDATE OR PUBLICIZE TO LARGER AUDIENCE(S) (CRIT2)

To satisfy this criterion there must be evidence of an intention to coerce, intimidate, or convey some other message to a larger audience (or audiences) than the immediate victims. Such evidence can include (but is not limited to) the following: pre- or post-attack statements by the perpetrator(s), past behavior by the perpetrators, or the particular nature of the target/victim, weapon, or attack type.

1 = "Yes" The incident meets Criterion 2.
0 = "No" The incident does not meet Criterion 2 or no indication.

Criterion 3: OUTSIDE INTERNATIONAL HUMANITARIAN LAW (CRIT3)

The action is outside the context of legitimate warfare activities, insofar as it targets non-combatants (i.e. the act must be outside the parameters permitted by international humanitarian law (jus in bello) as reflected in the Additional Protocol to the Geneva Conventions of 12 August 1949 and elsewhere).

1 = "Yes" The incident meets Criterion 3.
0 = "No" The incident does not meet Criterion 3.

Doubt Terrorism Proper?
(doubttterr)
Categorical Variable

In certain cases there may be some uncertainty whether an incident meets all of the criteria for inclusion. In these ambiguous cases, where there is a strong possibility, but not certainty, that an incident represents an act of terrorism, the incident is included in GTD and is coded as “Yes” for this variable.

1 = "Yes" There is doubt as to whether the incident is an act of terrorism.
0 = "No" There is essentially no doubt as to whether the incident is an act of terrorism.

Note: This field is presently only systematically available with incidents occurring after 1997. If this variable was not included in the data collection process at the time the case was coded, "-9" is recorded in the database.

Alternative Designation
(alternative)
Categorical Variable

This variable applies to only those cases coded as “Yes” for “Doubt Terrorism Proper?” (above). This variable identifies the most likely categorization of the incident other than terrorism.

1= Insurgency/Guerilla Action
2= Other Crime Type
3= Inter/Intra-Group Conflict
4= Lack of Intentionality

Note: This field is presently only systematically available with incidents occurring after 1997.

Part of Multiple Incident
(multiple)
Categorical Variable

In those cases where several attacks are connected, but where the various actions do not constitute a single incident (either the time of occurrence of incidents or their locations are discontinuous – see Single Incident Determination section above), then “Yes” is selected to denote that the particular attack was part of a “multiple” incident.

1 = “Yes” The attack is part of a multiple incident.
0 = “No” The attack is not part of a multiple incident.

III. Incident Location

Country
(country)
Categorical Variable

This field identifies the country or location where the incident occurred. This includes non-independent states, dependencies, and territories, such as Northern Ireland and Corsica. If an incident occurs in an autonomous or geographically non-contiguous area, it is listed separately from the “home” country. However, separatist regions, such as Kashmir, Chechnya, South Ossetia, Transnistria, or Republic of Cabinda, are coded as part of the “home” country.

In the case where the country in which an incident occurred cannot be identified, it is coded as “Unknown.”

Note that the political circumstances of many countries have changed over time. In a number of cases, countries that represented the location of terrorist attacks no longer exist; examples include West Germany, the USSR and Yugoslavia. In these cases the country name for the year the event occurred is recorded. As an example, a 1989 attack in Bonn would be recorded as taking place in West Germany (FRG). An identical attack in 1991 would be recorded as taking place in Germany.

Thus, the following change dates apply:

BREAKUP OF CZECHOSLOVAKIA:
Czech Republic – independence: 1 January 1993
Slovakia – independence: 1 January 1993

BREAKUP OF UNION OF SOVIET SOCIALIST REPUBLICS (USSR):
Armenia – independence: 21 September 1991
Azerbaijan – independence: 30 August 1991
Belarus – independence: 25 August 1991
Estonia – independence: 17 September 1991
Georgia – independence: 9 April 1991
Kazakhstan – independence: 16 December 1991
Kyrgyzstan – independence: 31 August 1991
Latvia – independence: 21 August 1991
Lithuania – independence: 17 September 1991
Moldova – independence: 27 August 1991
Tajikistan – independence: 9 September 1991
Turkmenistan – independence: 27 October 1991
Ukraine – independence: 24 August 1991
Uzbekistan – independence: 1 September 1991

BREAKUP OF YUGOSLAVIA:
Bosnia and Herzegovina – independence: 11 April 1992
Croatia – independence: 25 June 1991
Kosovo – UNMIK established: 10 June 1999
Macedonia – independence: 8 September 1991
Yugoslavia becomes Serbia-Montenegro: 4 February 2003
Montenegro – independence: 3 June 2006
Serbia – independence: 3 June 2006
Slovenia – independence: 1 January 1992

BREAKUP OF CZECHOSLOVAKIA:
Czech Republic – independence: 1 January 1993
Slovakia – independence: 1 January 1993

OTHER:
Eritrea – independence: 24 May 1993
Germany – unification: 3 October 1990

Country (Location) Codes
(Note: These codes are also used for the target/victim nationality fields. Entries marked with an asterisk (*) only appear as target/victim descriptors in the GTD.)

4 = Afghanistan
5 = Albania
6 = Algeria
7 = Andorra
8 = Angola
9 = Anguilla
10 = Antigua and Barbuda
11 = Argentina
12 = Armenia
13 = Aruba
14 = Australia
15 = Austria
16 = Azerbaijan
17 = Bahamas
18 = Bahrain
19 = Bangladesh
20 = Barbados
21 = Belgium
22 = Belize
23 = Benin
24 = Bermuda
25 = Bhutan
26 = Bolivia
27 = Bonaire (Netherlands Antilles)
28 = Bosnia-Herzegovina
29 = Botswana
30 = Brazil
31 = Brunei
32 = Bulgaria
33 = Burkina Faso
34 = Burundi
35 = Belarus
36 = Cambodia
37 = Cameroon
38 = Canada
39 = Cape Verde
40 = Cayman Islands
41 = Central African Republic
42 = Chad
43 = Chile
44 = China
45 = Colombia
46 = Comoros
47 = Congo (Brazzaville)
48 = Cook Islands
49 = Costa Rica
50 = Croatia
51 = Cuba
52 = Curacao (Netherlands Antilles)
53 = Cyprus
54 = Czech Republic
55 = Denmark
56 = Djibouti
57 = Dominica
58 = Dominican Republic
59 = Ecuador
60 = Egypt
61 = El Salvador
62 = Equatorial Guinea
63 = Eritrea
64 = Estonia
65 = Ethiopia
66 = Falkland Islands
67 = Fiji
68 = Finland
69 = France
70 = French Guiana
71 = French Polynesia
72 = Gabon
73 = Gambia
74 = Georgia
75 = Germany
76 = Ghana
77 = Gibraltar
78 = Greece
79 = Greenland*
80 = Grenada
81 = Guadeloupe
83 = Guatemala
84 = Guinea
85 = Guinea-Bissau
86 = Guyana
87 = Haiti
88 = Honduras
89 = Hong Kong
90 = Hungary
91 = Iceland
92 = India
93 = Indonesia
94 = Iran
95 = Iraq
96 = Ireland
97 = Israel
98 = Italy
99 = Ivory Coast
100 = Jamaica
101 = Japan
102 = Jordan
103 = Kazakhstan
104 = Kenya
105 = Kiribati
106 = Kuwait
107 = Kyrgyzstan
108 = Laos
109 = Latvia
110 = Lebanon
111 = Lesotho
112 = Liberia
113 = Libya
114 = Liechtenstein
115 = Lithuania
116 = Luxembourg
117 = Macau
118 = Macedonia
119 = Madagascar
120 = Malawi
121 = Malaysia
122 = Maldives
123 = Mali
124 = Malta

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by mindtouch™
125 = Man, Isle of
126 = Marshall Islands
127 = Martinique
128 = Mauritania
129 = Mauritius
130 = Mexico
131 = Micronesia
132 = Moldova
133 = Monaco
134 = Mongolia*
135 = Montserrat
136 = Morocco
137 = Mozambique
138 = Myanmar
139 = Namibia
140 = Nauru
141 = Nepal
142 = Netherlands
143 = New Caledonia
144 = New Zealand
145 = Nicaragua
146 = Niger
147 = Nigeria
148 = Niue
149 = North Korea
151 = Norway
152 = Oman*
153 = Pakistan
154 = Palau
155 = West Bank and Gaza Strip
156 = Panama
157 = Papua New Guinea
158 = Paraguay
159 = Peru
160 = Philippines
161 = Poland
162 = Portugal
163 = Puerto Rico
164 = Qatar
166 = Romania
167 = Russia
168 = Rwanda
169 = Saba (Netherlands Antilles)
171 = San Marino
172 = Sao Tome and Principe
173 = Saudi Arabia
174 = Senegal
175 = Serbia-Montenegro
176 = Seychelles
177 = Sierra Leone
178 = Singapore
179 = Slovak Republic
180 = Slovenia
181 = Solomon Islands
182 = Somalia
183 = South Africa
184 = South Korea
185 = Spain
186 = Sri Lanka
187 = St. Barthelemy
188 = Sint Eustatius (Netherlands Antilles)
189 = St. Kitts and Nevis
190 = St. Lucia
191 = Sint Maarten (Netherlands Antilles)
192 = St. Martin*
193 = St. Pierre and Miquelon
194 = St. Vincent and the Grenadines
195 = Sudan
196 = Suriname
197 = Swaziland
198 = Sweden
199 = Switzerland
200 = Syria
201 = Taiwan
202 = Tajikistan
203 = Tanzania
204 = Togo
205 = Thailand
206 = Tonga
207 = Trinidad and Tobago
208 = Tunisia
209 = Turkey
210 = Turkmenistan
211 = Turks and Caicos
212 = Tuvalu
213 = Uganda
214 = Ukraine
215 = United Arab Emirates
216 = Great Britain
217 = United States
218 = Uruguay
219 = Uzbekistan
220 = Vanuatu
221 = Vatican City
222 = Venezuela
223 = Vietnam
224 = Virgin Islands (British)
225 = Virgin Islands (U.S.)
226 = Wallis and Futuna
227 = Samoa (Western Samoa)
228 = Yemen
229 = Congo (Kinshasa)
230 = Zambia
231 = Zimbabwe
233 = Northern Ireland
235 = Yugoslavia
Region
(region)
Categorical Variable

This field identifies the region in which the incident occurred. The regions are divided into the following 13 categories, and dependent on the country coded for the case:

1= North America
 Canada, Mexico, St. Pierre and Miquelon, United States

2= Central America & Caribbean
 Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, Bonaire (Netherlands Antilles), Cayman Islands, Costa Rica, Cuba, Curacao (Netherlands Antilles), Dominica, Dominican Republic, El Salvador, Grenada, Guadeloupe, Guatemala, Haiti, Honduras, Jamaica, Martinique, Montserrat, Nicaragua, Panama, Puerto Rico, Saba (Netherlands Antilles), Sint Eustatius (Netherlands Antilles), Sint Maarten (Netherlands Antilles), St. Barthelemy, St. Kitts and Nevis, St. Lucia, St. Martin, St. Vincent and the Grenadines, Trinidad and Tobago, Turks and Caicos, Virgin Islands (British), Virgin Islands (U.S.)

3= South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Falkland Islands, French Guiana, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela

4= East Asia
 China, Hong Kong, Japan, Macau, Mongolia, North Korea, South Korea, Taiwan, Tibet

5= Southeast Asia
 Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, South Vietnam, Thailand, Timor-Leste, Vietnam

6= South Asia
 Afghanistan, Bangladesh, Bhutan, India, Maldives, Mauritius, Nepal, Pakistan, Seychelles, Sri Lanka

7= Central Asia
 Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan

8= Western Europe
 Andorra, Austria, Belgium, Corsica, Denmark, Finland, France, Germany, Gibraltar, Great Britain, Greece, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, Malta, Man, Isle of, Monaco, Netherlands, Northern Ireland, Norway, Portugal, San Marino, Spain, Sweden, Switzerland, Vatican City, West Germany (FRG)

9= Eastern Europe
 Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Czechoslovakia, East Germany (GDR), Hungary, Kosovo, Macedonia, Moldova, Montenegro, Poland, Romania, Serbia, Serbia-Montenegro, Slovak Republic, Slovenia, Yugoslavia

10= Middle East & North Africa
 Algeria, Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, North Yemen, Oman, Qatar, Saudi Arabia, South Yemen, Syria, Tunisia, Turkey, United Arab Emirates, West Bank and Gaza Strip, Western Sahara, Yemen

11= Sub-Saharan Africa
 Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo (Brazzaville), Congo (Kinshasa), Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Rhodesia, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe

12= Russia & the Newly Independent States (NIS)
 Armenia, Azerbaijan, Belarus, Estonia, Georgia, Latvia, Lithuania, Russia, Soviet Union, Ukraine

13= Australasia & Oceania
 Australia, Cook Islands, Fiji, French Polynesia, Kiribati, Marshall Islands, Micronesia, Nauru, New Caledonia, New Zealand, Niue, Palau, Papua New Guinea, Samoa (Western Samoa), Solomon Islands, Tonga, Tuvalu, Vanuatu, Wallis and Futuna

Province / Administrative Region / U.S. State
(provstate)
Text Variable

This variable records the name (at the time of event) of the 1st order subnational administrative region in which the event occurs.

City

(city)

Text Variable

This field contains the name of the city, village, or town in which the incident occurred. If the city, village, or town for an incident is unknown, then this field contains the smallest administrative area below provstate which can be found for the incident.

Vicinity?

(vicinity)

Categorical Variable

1 = "Yes" The incident occurred in the immediate vicinity of the city in question.
0 = "No" The incident in the city itself.

Location Description

(location)

Text Variable

This field is used to specify additional information about the location of the incident.

Latitude

(latitude)

Numeric Variable

This field records the latitude (based on WGS1984 standards) of the city in which the event occurred.

Longitude

(longitude)

Numeric Variable

This field records the longitude (based on WGS1984 standards) of the city in which the event occurred.

Geocoding Specificity

Categorical Variable

This field identifies the geospatial resolution of the latitude and longitude fields.

1 = event occurred in city/village/town and lat/lon is for that location
2 = event occurred in city/village/town and no lat/lon could be found, so coordinates are for centroid of smallest subnational administrative region identified
3 = event did not occur in city/village/town, so coordinates are for centroid of smallest subnational administrative region identified
4 = no 2nd order or smaller region could be identified, so coordinates are for state centroid
5 = no lat/lon values could be identified for the location of the attack

IV. Attack Information

Attack Type
Categorical Variable

This field captures the general method of attack and often reflects the broad class of tactics used. It consists of nine categories, which are defined below. Up to three attack types can be recorded for each incident. Typically, only one attack type is recorded for each incident unless the attack is comprised of a sequence of events.

When multiple attack types may apply, the most appropriate value is determined based on the hierarchy below. For example, if an assassination is carried out through the use of an explosive, the Attack Type is coded as Assassination, not Bombing/Explosion. If an attack involves a sequence of events, then the first, the second, and the third attack types are coded in the order of the hierarchy below rather than the order in which they occurred.

Attack Type Hierarchy:

1 = Assassination
2 = Hijacking
3 = Kidnapping
4 = Barricade Incident
5 = Bombing/Explosion
6 = Unknown
7 = Armed Assault
8 = Unarmed Assault
9 = Facility/Infrastructure Attack

1 = ASSASSINATION

An act whose primary objective is to kill one or more specific, prominent individuals. Usually carried out on persons of some note, such as high-ranking military officers, government officials, celebrities, etc. Not to include attacks on non-specific members of a targeted group. The killing of a police officer would be an armed assault unless there is reason to believe the attackers singled out a particularly prominent officer for assassination.

2 = ARMED ASSAULT

An attack whose primary objective is to cause physical harm or death directly to human beings by use of a firearm, incendiary, or sharp instrument (knife, etc.). Also included under this attack type would be CBRN (chemical, biological, radiological, nuclear) weapons. Not to include acts of a purely personal or criminal nature, or acts in which people are incidentally harmed in pursuit of another primary objective. Not to include attacks involving the use of fists, rocks, sticks, or other handheld (less-than-lethal) weapons.
3 = Bombing/Explosion

An attack where the primary effects are caused by an energetically unstable material undergoing rapid decomposition and releasing a pressure wave that causes physical damage to the surrounding environment. Can include either high or low explosives (including a dirty bomb) but does not include a nuclear explosive device that releases energy from fission and/or fusion, or an incendiary device where decomposition takes place at a much slower rate.

4 = HIJACKING

An act whose primary objective is to take control of a vehicle such as an aircraft, boat, bus, etc. for the purpose of diverting it to an unprogrammed destination, force the release of prisoners, or some other political objective. Obtaining payment of a ransom should not the sole purpose of a Hijacking, but can be one element of the incident so long as additional objectives have also been stated. Hijackings are distinct from Hostage Taking because the target is a vehicle, regardless of whether there are people/passengers in the vehicle.

5 = HOSTAGE TAKING (BARRICADE INCIDENT)

An act whose primary objective is to take control of hostages for the purpose of achieving a political objective through concessions or through disruption of normal operations. Such attacks are distinguished from kidnapping since the incident occurs and usually plays out at the target location with little or no intention to hold the hostages for an extended period in a separate clandestine location.

6 = HOSTAGE TAKING (KIDNAPPING)

An act whose primary objective is to take control of hostages for the purpose of achieving a political objective through concessions or through disruption of normal operations. Kidnappings are distinguished from Barricade Incidents (above) in that they involve moving and holding the hostages in another location.

7 = FACILITY / INFRASTRUCTURE ATTACK

An act, excluding the use of an explosive, whose primary objective is to cause damage to a non-human target, such as a building, monument, train, pipeline, etc. Such attacks include arson and various forms of sabotage (e.g., sabotaging a train track is a facility/infrastructure attack, even if passengers are killed). Facility/infrastructure attacks can include acts which aim to harm an installation, yet also cause harm to people incidentally (e.g. an arson attack primarily aimed at damaging a building, but causes injuries or fatalities).

8 = UNARMED ASSAULT

An attack whose primary objective is to cause physical harm or death directly to human beings by any means other than explosive, firearm, incendiary, or sharp instrument (knife, etc.).

9 = UNKNOWN

The attack type cannot be determined from the available information.
Second Attack Type
(attacktype2)
Categorical Variable

This variable utilizes the hierarchy and attack type definitions listed above.

Third Attack Type
(attacktype3)
Categorical Variable

This variable utilizes the hierarchy and attack type definitions listed above.

Successful Attack?
(success)
Categorical Variable

Success of a terrorist strike is defined according to the tangible effects of the attack. Success is not judged in terms of the larger goals of the perpetrators. For example, a bomb that exploded in a building would be counted as a success even if it did not succeed in bringing the building down or inducing government repression.

The definition of a successful attack depends on the type of attack. Essentially, the key question is whether or not the attack type took place. If a case has multiple attack types, success is based on the most serious attack type (see hierarchy above).

1 = "Yes" The incident was successful.
0 = "No" The incident was not successful.

ASSASSINATION

In order for an assassination to be successful, the target of the assassination must be killed. For example, even if an attack kills numerous people but not the target, it is an unsuccessful assassination.

ARMED ASSAULT

An armed assault is determined to be successful if the assault takes place and if a target is hit. Unsuccessful armed assaults are those in which the perpetrators attack and do not hit the target. An armed assault is also unsuccessful if the perpetrators are apprehended on their way to commit the assault. To make this determination, however, there must be information to indicate that an actual assault was imminent.

BOMBING/EXPLOSION

A bombing is successful if the bomb or explosive device detonates. Bombings are considered unsuccessful if they do not detonate. The success or failure of the bombing is not based on whether it hit the intended target.

HIJACKING

A hijacking is successful if the hijackers assume control of the vehicle at any point, whereas a hijacking is unsuccessful if the hijackers fail to assume control of the vehicle. The success or failure of the hijacking is not based on whether the vehicle reached the intended destination of the hijackers.
HOSTAGE TAKING (BARRICADE INCIDENT)

A barricade incident is successful if the hostage takers assume control of the individuals at any point, whereas a barricade incident is unsuccessful if the hostage takers fail to assume control of the individuals.

HOSTAGE TAKING (KIDNAPPING)

A kidnapping is successful if the kidnappers assume control of the individuals at any point, whereas a kidnapping is unsuccessful if the kidnappers fail to assume control of the individuals.

FACILITY / INFRASTRUCTURE ATTACK

A facility attack is determined to be successful if the facility is damaged. If the facility has not been damaged, then the attack is unsuccessful.

UNARMED ASSAULT

An unarmed assault is determined to be successful there is a victim that has been injured. Unarmed assaults that are unsuccessful are those in which the perpetrators do not injure anyone. An unarmed assault is also unsuccessful if the perpetrators are apprehended when on their way to commit the assault. To make this determination, however, there must be information to indicate that an assault was imminent.

Suicide Attack?

(suicide)
Categorical Variable

This variable is coded “Yes” in those cases where there is evidence that the perpetrator did not intend to escape from the attack alive.

1 = “Yes” The incident was a suicide attack.
0 = “No” The incident was not a suicide attack.

V. Weapon Information

Information on up to four types and sub-types of the weapons used in an attack are recorded for each case, in addition to any information on specific weapon details reported.

Weapon Type

(weaptype1)
Categorical Variable

Up to four weapon types are recorded for each incident. This field records the general type of weapon used in the incident. It consists of the following 13 categories:

1 = Biological
A weapon whose components are produced from pathogenic microorganisms or toxic substances of biological origins.

2 = Chemical
A weapon produced from toxic chemicals that is contained in a delivery system and dispersed as a liquid, vapor, or aerosol

3 = Radiological
A weapon whose components are produced from radioactive materials that emit ionizing radiation and can take many forms.

4 = Nuclear
A weapon which draws its explosive force from fission, fusion, or a combination of these methods.

5 = Firearms
A weapon which is capable of firing a projectile using an explosive charge as a propellant.

6 = Explosives/Bombs/Dynamite
A weapon composed of energetically unstable material undergoing rapid decomposition and releasing a pressure wave that causes physical damage to the surrounding environment.

7 = Fake Weapons
A weapon that was claimed by the perpetrator at the time of the incident to be real but was discovered after-the-fact to be non-existent or incapable of producing the desired effects.

8 = Incendiary
A weapon that is capable of catching fire, causing fire, or burning readily and produces intensely hot fire when exploded.

9 = Melee
A weapon that does not involve a projectile in which the user and target are in contact with it simultaneously.

10 = Vehicle
An automobile that is used in an incident that does not incorporate the use of explosives such as a car bomb or truck bomb.

11 = Sabotage Equipment
A weapon that is used in the demolition or destruction of property (e.g., removing bolts from a train tracks).

12 = Other
A weapon that has been identified but does not fit into one of the above categories.

13 = Unknown
The weapon type cannot be determined from the available information.

Weapon Sub-type

(weapsubtype1)

Categorical Variable

This field records a more specific value for most of the Weapon Types identified immediately above.

The corresponding weapon sub-types for each primary weapon type are as follows:
Biological
[no corresponding weapon sub-types]

Chemical
1 = Poisoning

Radiological
[no corresponding weapon sub-types]

Nuclear
[no corresponding weapon sub-types]

Firearms
2 = Automatic Weapon (including semi-automatic)
3 = Handgun
4 = Rifle/Shotgun (non-automatic)
5 = Unknown Gun Type
6 = Other Gun Type

Explosives/Bombs/Dynamite
7 = Grenade (not RPGs)
8 = Mine
9 = Mail Bomb (letter, package, parcel)
10 = Pressure Trigger
11 = Projectile (rockets, mortars, RPGs, etc.)
12 = Remote Device (trigger, control, detonate)
13 = Suicide (carried bodily by human being)
14 = Time Fuse
15 = Vehicle
16 = Unknown Explosive Type
17 = Other Explosive Type
28 = Dynamite/TNT
29 = Sticky Bomb

Fake Weapons
[no corresponding weapon sub-types]

Incendiary
18 = Arson/Fire
19 = Flame Thrower
20 = Gasoline or Alcohol

Melee
21 = Blunt Object
22 = Hands, Feet, Fists
23 = Knife or Other Sharp Object
24 = Rope or Other Strangling Device
26 = Suffocation
27 = Unknown Weapon Type
Vehicle
[no corresponding weapon sub-types]

Sabotage Equipment
[no corresponding weapon sub-types]

Other
[no corresponding weapon sub-types]

Unknown
[no corresponding weapon sub-types]

Second Weapon Type
(weaptype2)
Categorical Variable

Conventions follow “Weapon Type” field.

Second Weapon Sub-Type
(weapsubtype2)
Categorical Variable

Conventions follow “Weapon Sub-Type” field.

Third Weapon Type
(weaptype3)
Categorical Variable

Conventions follow “Weapon Type” field.

Third Weapon Sub-Type
(weapsubtype3)
Categorical Variable

Conventions follow “Weapon Sub-Type” field.

Fourth Weapon Type
(weaptype4)
Categorical Variable

Conventions follow “Weapon Type” field.
Fourth Weapon Sub-Type

(weapsubtype4)
Categorical Variable

Conventions follow “Weapon Sub-Type” field.

Weapon Details

(weapdetail)
Text Variable

This field notes any pertinent information on the type of weapon(s) used in the incident. Such notes could include the novel use or means of concealing a weapon, specific weapon models, interesting details of the weapons’ origins, etc.

VI. Targets and Perpetrators

Target/Victim Information

Information on up to three targets/victims is recorded for each incident. The target/victim information fields coded for each of the three targets include type, name of entity, specific target/victim, and nationality of the target/victim. The field contains information on both intended targets and incidental bystanders, and therefore, intentionality should be carefully considered.

Target/Victim Type

(targtype1)
Categorical Variable

The target/victim type field captures the general type of target/victim. It consists of the following 22 categories, which are subsequently defined:

1 = BUSINESS

Businesses are defined as individuals or organizations engaged in commercial or mercantile activity as a means of livelihood. Any attack on a business or private citizens patronizing a business such as a restaurant, gas station, music store, bar, café, etc.

This includes attacks carried out against corporate offices or employees of firms like mining companies, or oil corporations. Furthermore, includes attacks conducted on business people or corporate officers. Included in this value as well are hospitals and chambers of commerce and cooperatives. Does not include attacks carried out in public or quasi-public areas such as “business district or commercial area”, (these attacks are captured under “Private Citizens and Property”, see below.)

2 = GOVERNMENT (GENERAL)

Any attack on a government building; government member, former members, including members of political parties in official capacities, their convoys, or events sponsored by political parties; political movements; or a government sponsored institution where the attack is expressly carried out to harm the government. This value includes attacks on judges, public attorneys (e.g., prosecutors), courts and
court systems, politicians, royalty, head of state, government employees (unless police or military), election-related attacks, intelligence agencies and spies, or family members of government officials when the relationship is relevant to the motive of the attack.

3 = POLICE

This value includes attacks on members of the police force or police installations; this includes police boxes, patrols headquarters, academies, cars, checkpoints, etc. Includes attacks against jails or prison facilities, or jail or prison staff or guards.

4 = MILITARY

Includes attacks against army units, patrols, barracks, and convoys, jeeps, etc. Also includes attacks on recruiting sites, and soldiers engaged in internal policing functions such as at checkpoints and in anti-narcotics activities.

Excludes attacks against non-state militias and guerrillas, these types of attacks are coded as “Terrorist/Non-state Militias” see below.

5 = ABORTION RELATED

Attacks on abortion clinics, employees, patrons, or security personnel stationed at clinics.

6 = AIRPORTS & AIRLINES

An attack that was carried out either against an airplane or against an airport. Attacks against airline employees while on board are also included in this value. Includes attacks conducted against airport business offices and executives. Attacks where airplanes were used to carry out the attack (such as three of the four 9/11 attacks) are not included.

7 = GOVERNMENT (DIPLOMATIC)

Attacks carried out against foreign missions, including embassies, consulates, etc. This value includes cultural centers that have diplomatic functions, and attacks against diplomatic staff and their families (when the relationship is relevant to the motive of the attack) and property. The United Nations is a diplomatic target.

8 = EDUCATIONAL INSTITUTION

Attacks against schools, teachers, or guards protecting school sites. Includes attacks against university professors, teaching staff and school buses. Moreover, includes attacks against religious schools in this value.

As noted below in the “Private Citizens and Property” value, the GTD has several attacks against students. If attacks involving students are not expressly against a school, university or other educational institution or are carried out in an educational setting, they are coded as private citizens and property.

Excludes attacks against military schools (attacks on military schools are coded as “Military,” see below).

9 = FOOD OR WATER SUPPLY

Attacks on food or water supplies or reserves are included in this value. This generally includes attacks aimed at the infrastructure related to food and water for human consumption.
10 = JOURNALISTS & MEDIA

Includes, attacks on reporters, news assistants, photographers, publishers, as well as attacks on media headquarters and offices.

Attacks on transmission facilities such as antennae or transmission towers, or broadcast infrastructure are coded as “Telecommunications,” see below.

11 = MARITIME (INCLUDES PORTS AND MARITIME FACILITIES)

Implies civilian maritime. Includes attacks against fishing ships, oil tankers, ferries, yachts, etc. (Attacks on fishermen are coded as “Private Citizens and Property,” see below).

12 = NGO

Includes attacks on offices and employees of non-governmental organizations (NGOs). NGOs here include large multinational non-governmental organizations such as the Red Cross and Doctors without Borders.

Does not include labor unions, social clubs, student groups, and other non-NGO (such cases are coded as “Other”, see immediately below).

13= OTHER

This value includes acts of terrorism committed against targets which do not fit into other categories.

14= PRIVATE CITIZENS & PROPERTY

This value includes attacks on individuals, the public in general or attacks in public areas including markets, commercial streets, busy intersections and pedestrian malls.

Also includes ambiguous cases where the target/victim was a named individual, or where the target/victim of an attack could be identified by name, age, occupation, gender or nationality. This value also includes ceremonial events, such as weddings and funerals.

The GTD contains a number of attacks against students. If these attacks are not expressly against a school, university or other educational institution or are not carried out in an educational setting, these attacks are coded using this value. Also, includes incidents involving political supporters as private citizens and property, provided that these supporters are not part of a government-sponsored event. Finally, this value includes police informers.

Does not include attacks causing civilian casualties in businesses such as restaurants, cafes or movie theaters (these categories are coded as “Business” see above).

15 = RELIGIOUS FIGURES/INSTITUTIONS

This value includes attacks on religious leaders, (Imams, priests, bishops, etc.), religious institutions (mosques, churches), religious places or objects (shrines, relics, etc.). This value also includes attacks on organizations that are affiliated with religious entities that are not NGOs, businesses or schools.

Attacks on religious pilgrims are considered “Private Citizens and Property;” attacks on missionaries are considered religious figures.
16 = TELECOMMUNICATION

This includes attacks on facilities and infrastructure for the transmission of information. More specifically this value includes things like cell phone towers, telephone booths, television transmitters, radio, and microwave towers.

17 = TERRORISTS/NON-STATE MILITIAS

Terrorists or members of identified terrorist groups within the GTD are included in this value. Membership is broadly defined and includes informants for terrorist groups, but excludes former or surrendered terrorists.

This value also includes cases involving the targeting of militias and guerillas.

18 = TOURISTS

This value includes the targeting of tour buses, tourists, or “tours.” Tourists are persons who travel primarily for the purposes of leisure or amusement. Government tourist offices are included in this value.

The attack must clearly target tourists, not just an assault on a business or transportation system used by tourists.

Travel agencies are coded as business targets.

19 = TRANSPORTATION (OTHER THAN AVIATION)

Attacks on public transportation systems are included in this value. This can include efforts to assault public buses, minibuses, trains, metro/subways, highways (if the highway itself is the target of the attack), bridges, roads, etc.

The GTD contains a number of attacks on generic terms such as “cars” or “vehicles.” These attacks are assumed to be against “Private Citizens and Property” unless shown to be against public transportation systems. In this regard, buses are assumed to be public transportation unless otherwise noted.

20 = UNKNOWN

The target type cannot be determined from the available information.

21 = UTILITIES

This value pertains to facilities for the transmission or generation of energy. For example, power lines, oil pipelines, electrical transformers, high tension lines, gas and electric substations, are all included in this value. This value also includes lampposts or street lights.

Attacks on officers, employees or facilities of utility companies excluding the type of faculties above are coded as business.

22 = VIOLENT POLITICAL PARTIES

This value pertains to entities that are both political parties (and thus, coded as “government” in this coding scheme) and terrorists. It is operationally defined as groups that engage in electoral politics and appear as “Perpetrators” in the GTD.
Text Variable

This is the name of the corporate entity or government agency that was targeted. If no specific entity was targeted, this field is left blank. If the element targeted is unspecified, “Unknown” is listed.

Specific Target/Victim

(target1)
Text Variable

This is the specific person, building, installation, etc., that was targeted and/or victimized and is a part of the entity named above. (For example, if the U.S. Embassy in Country X was attacked the “Name of Entity” would be “U.S. Department of State” and the “Specific Target/Victim” would be “U.S. Embassy in Country X.”) However, if the target includes multiple victims (e.g., in a kidnapping or assassination), only the first victim’s name is recorded in this field, with remaining names recorded in the “Additional Notes” field.

Nationality of Target/Victim

(natlty1)
Categorical Variable

This is the nationality of the target that was attacked, and is not necessarily the same as the country in which the incident occurred, although in most cases it is. For hijacking incidents, the nationality of the plane is recorded and not that of the passengers. For numeric nationality codes, please see the country codes in section III.

Second Target/Victim Type

(targtype2)
Categorical Variable

Conventions follow “Target/Victim Type” field.

Name of Second Entity

(corp2)
Text Variable

Conventions follow “Name of Entity” field.

Second Specific Target/Victim

(target2)
Text Variable

Conventions follow “Specific Target/Victim” field.

Nationality of Second Target/Victim

(natlty2)
Categorical Variable
Third Target/Victim Type
(targtype3)
Categorical Variable

Third Target/Victim Type
(targtype2)
Categorical Variable

Conventions follow “Target/Victim Type” field.

Name of Third Entity
(corp3)
Text Variable

Conventions follow “Name of Entity” field.

Third Specific Target/Victim
(target3)
Text Variable

Conventions follow “Specific Target/Victim” field.

Nationality of Third Target/Victim
(natlty3)
Categorical Variable

Conventions follow “Nationality of Target/Victim” field. For numeric nationality codes, please see the country codes in section III-A.

Perpetrator Information
Information on up to three perpetrators is recorded for each incident. This includes the perpetrator group name and the perpetrator group sub-name, as well as details about any claims of responsibility for the attack. Note that the perpetrator attributions recorded for each attack reflect what is reported in open-source media accounts, which does not necessarily indicate a legal finding of culpability.

Perpetrator Group Name
(gname)
Text Variable
This field contains the name of the group that carried out the attack. In order to ensure consistency in the usage of group names for the database, the GTD database uses a standardized list of group names that have been established by project staff to serve as a reference for all subsequent entries.

If no information about the perpetrator group is available, this field is coded as “Unknown.” For events that occurred post-1997, if the perpetrator is an individual who is not affiliated to a perpetrator group, this field is coded as “Individual(s).”

Perpetrator Sub-Group Name

(gsubname)
Text Variable

This field contains any additional qualifiers or details about the name of the group that carried out the attack. This includes but is not limited to the name of the specific faction when available.

Second Perpetrator Group Name

(gname2)
Text Variable

This field is used to record the name of the second perpetrator when responsibility for the attack is attributed to more than one perpetrator. Conventions follow “Perpetrator Group” field.

Second Perpetrator Sub-Group Name

(gsubname2)
Text Variable

This field is used to record additional qualifiers or details about the second perpetrator group name when responsibility for the attack is attributed to more than one perpetrator. Conventions follow “Perpetrator Sub-Group Name” field.

Third Perpetrator Group Name

(gname3)
Text Variable

This field is used to record the name of the third perpetrator when responsibility for the attack is attributed to more than two perpetrators. Conventions follow “Perpetrator Group” field.

Third Perpetrator Sub-Group Name

(gsubname3)
Text Variable

This field is used to record additional qualifiers of details about the third perpetrator group name when responsibility for the attack is attributed to more than two perpetrators. Conventions follow “Perpetrator Sub-Group Name” field.
First Perpetrator Group Suspected/Unconfirmed?
(guncertain1)
Categorical Variable

This variable indicates whether or not the information reported by sources about the Perpetrator Group Name(s) is based on speculation or dubious claims of responsibility.

1 = “Yes” The perpetrator attribution(s) for the incident are suspected.
0 = “No” The perpetrator attribution(s) for the incident are not suspected.

Second Perpetrator Group Suspected/Unconfirmed?
(guncertain2)
Categorical Variable

This variable indicates whether or not the information reported by sources about the Perpetrator Group Name(s) is based on speculation or dubious claims of responsibility.

1 = “Yes” The perpetrator attribution(s) for the incident are suspected.
0 = “No” The perpetrator attribution(s) for the incident are not suspected.

Conventions follow “First Perpetrator Group Suspected/Unconfirmed?”

Third Perpetrator Group Suspected/Unconfirmed?
(guncertain3)
Categorical Variable

This variable indicates whether or not the information reported by sources about the Perpetrator Group Name(s) is based on speculation or dubious claims of responsibility.

1 = “Yes” The perpetrator attribution(s) for the incident are suspected.
0 = “No” The perpetrator attribution(s) for the incident are not suspected.

Conventions follow “First Perpetrator Group Suspected/Unconfirmed?”

Number of Perpetrators
(nperps)
Numeric Variable

This field indicates the total number of terrorists participating in the incident. (In the instance of multiple perpetrator groups participating in one case, the total number of perpetrators, across groups, is recorded). There are often discrepancies in information on this value.

Where several independent credible sources report different numbers of attackers, the value of this variable reflects the number given by the majority of sources, unless there is reason to do otherwise. Where there is no majority figure among independent sources, the database records the lowest proffered perpetrator figure, unless there is clear reason to do otherwise. In cases where the number of perpetrators is stated vaguely, for example “…at least 11 attackers”, then the
lowest possible number is recorded, in this example, “11.” “-99” or “Unknown” appears when the number of perpetrators is not reported.

Number of Perpetrators Captured

(nperpcap)

Numeric Variable

This field records the number of perpetrators taken into custody. “-99” or “Unknown” appears when there is evidence of captured, but the number is not reported.

Divergent reports on the number of perpetrators captured are dealt with in same manner used for the Number of Perpetrators variable described above.

Note: This field is presently only systematically available with incidents occurring after 1997.

Claim of Responsibility?

(claimed)

Categorical Variable

This field is used to indicate whether a group or person(s) claimed responsibility for the attack. If marked “Yes”, it indicates that a person or a group did in fact claim responsibility. When there are multiple perpetrator groups involved, this field refers to the First Perpetrator Group (separate fields for the Second and Third groups follow below).

\[1 = \text{"Yes" A group or person claimed responsibility for the attack.}\]
\[0 = \text{"No" No claim of responsibility was made.}\]

Mode for Claim of Responsibility

(claimmode)

Categorical Variable

This records one of 10 modes used by claimants to claim responsibility and might be useful to verify authenticity, track trends in behavior, etc. If greater detail exists (for instance, a particularly novel or strange mode is used) this information is captured in the "Additional Notes" field.

Mode Values:

1 = Letter
2 = Call (post-incident)
3 = Call (pre-incident)
4 = E-mail
5 = Note left at scene
6 = Video
7 = Posted to website, blog, etc.
8 = Personal claim
9 = Other
10 = Unknown

Note: This field is presently only systematically available with incidents occurring after 1997.
Competing Claims of Responsibility?
(compclaim)
Categorical Variable

This field is used to indicate whether more than one group claimed separate responsibility for the attack. If marked "Yes", it indicates that the groups entered in conjunction with the case each claimed responsibility for the attack (i.e., they did not work together, but each independently tried to claim credit for the attack).

1 = "Yes" There are competing claims of responsibility for the attack.
0 = "No" There are not competing claims of responsibility for the attack.

Note: This field is presently only systematically available with incidents occurring after 1997.

Second Group Claim of Responsibility?
(claim2)
Categorical Variable

1 = "Yes" A group or person claimed responsibility for the attack.
0 = "No" No claim of responsibility was made.

Conventions follow the "Claim of Responsibility" field.

Note: This field is presently only systematically available for incidents occurring after 1997.

Mode for Second Group Claim of Responsibility
(claimmode2)
Categorical Variable

Conventions follow the "Mode for Claim of Responsibility" field.

Note: This field is presently only systematically available for incidents occurring after 1997.

Third Group Claim of Responsibility?
(claim3)
Categorical Variable

1 = "Yes" A group or person claimed responsibility for the attack.
0 = "No" No claim of responsibility was made.

Conventions follow the "Claim of Responsibility" field.

Note: This field is presently only systematically available with incidents occurring after 1997.
Mode for Third Group Claim of Responsibility

(claimmode3)
Categorical Variable

Conventions follow “Mode for Claim of Responsibility” field.

Note: This field is presently only systematically available with incidents occurring after 1997.

Motive

(motive)
Text Variable

When reports explicitly mention a specific motive for the attack, this motive is recorded in the “Motive” field. This field may also include general information about the political, social, or economic climate at the time of the attack if considered relevant to the motivation underlying the incident.

Note: This field is presently only systematically available with incidents occurring after 1997.

VII. Casualties and Consequences

Total Number of Fatalities

(nkill)
Numeric Variable

This field stores the number of total confirmed fatalities for the incident. The number includes all victims and attackers who died as a direct result of the incident. Where there is evidence of fatalities, but a figure is not reported or it is too vague to be of use, such as “many” or “some,” “-99” (unknown) is the value given to this field. If information is missing regarding the number of victims killed in an attack, but perpetrator fatalities are known, this value will reflect only the number of perpetrators who died as a result of the incident. Likewise, if information on the number of perpetrators killed in an attack is missing, but victim fatalities are known, this field will only report the number of victims killed in the incident.

Where several independent sources report different numbers of casualties, the database will usually reflect the number given by the most recent source. However, the most recent source will not be used if the source itself is of questionable validity or if the source bases its casualty numbers on claims made by a perpetrator group. When there are several “most recent” sources published around the same time, or there are concerns about the validity of a recent source, the majority figure will be used. Where there is no majority figure among independent sources, the database will record the lowest proffered fatality figure, unless that figure comes from a source of questionable validity or there is another compelling reason to do otherwise. Conflicting reports of fatalities will be noted in the “Additional Notes” field.

- Note: Preservation of Statistical Accuracy

- When several cases are linked together, sources sometimes provide a cumulative fatality total for all of the events rather than fatality figures for each incident. In such cases, the preservation of statistical accuracy is achieved by evenly distributing fatalities across the linked incidents. Depending on the number of linked events and the cumulative total of fatalities, it is possible for fractions to appear in the fatality field for individual events. It will be noted in the “Additional Notes” field whenever cumulative totals are divided across multiple events. This method for preserving statistical accuracy is also
used for calculating the values for the following fields when individual event totals are unknown: “Number of U.S. Fatalities,” “Number of Perpetrator Fatalities,” “Total Number of Injured,” “Number of U.S. Injured,” and “Number of Perpetrators Injured.”

Number of U.S. Fatalities

(nkillus)
Numeric Variable

This field records the number of U.S. citizens who died as a result of the incident, and follows the conventions of “Total Number of Fatalities” described above. Thus, this field records the number of U.S. victims and U.S. perpetrators who died as a result of the attack. The value for this field is not limited to U.S. citizens killed on U.S. soil, but also includes U.S. citizens who died in incidents occurring outside of the U.S.

Number of Perpetrator Fatalities

(nkillter)
Numeric Variable

Limited to only perpetrator fatalities, this field follows the conventions of the “Total Number of Fatalities” field described above.

Total Number of Injured

(nwound)
Numeric Variable

This field records the number of confirmed non-fatal injuries to both perpetrators and victims. It follows the conventions of the “Total Number of Fatalities” field described above.

Number of U.S. Injured

(nwoundus)
Numeric Variable

This field records the number of confirmed non-fatal injuries to U.S. citizens, both perpetrators and victims. It follows the conventions of the “Number of U.S. Fatalities” field described above.

Number of Perpetrators Injured

(nwoundte)
Numeric Variable

Conventions follow the “Number of Perpetrator Fatalities” field described above.

Property Damage?

(property)
Categorical Variable
“Yes” appears if there is evidence of property damage from the incident.

1 = “Yes” The incident resulted in property damage.
0 = “No” The incident did not result in property damage.
-9 = “Unknown” It is unknown if the incident resulted in property damage.

Extent of Property Damage

(propextent)
Categorical Variable

If “Property Damage?” is “Yes,” then one of the following four categories describes the extent of the property damage:

1 = Catastrophic (likely > $1 billion)
2 = Major (likely > $1 million but < $1 billion)
3 = Minor (likely < $1 million)
4 = Unknown

Value of Property Damage (in U.S. $)

(propvalue)
Numeric Variable

If “Property Damage?” is “Yes,” then the exact U.S. dollar amount (at the time of the incident) of total damages is listed. Where applicable, property values reported in foreign currencies are converted to U.S. dollars before being entered into the GTD. If no dollar figure is reported, the field is left blank. That is, a blank field here does not indicate that there was no property damage but, rather, that no precise estimate of the value was available. The value of damages only includes direct economic effects of the incident (i.e. cost of buildings, etc.) and not indirect economic costs (longer term effects on the company, industry, tourism, etc.).

Protocols for recording inconsistent numbers, etc., listed above are followed (see, for example, “Number of Perpetrators”).

Property Damage Comments

(propcomment)
Text Variable

If “Property Damage?” is “Yes,” then non-monetary or imprecise measures of damage may be described in this field. This field is also used to list specific details about the property that was damaged in an attack, such as the type of vehicle that was destroyed, the areas or parts of a building that were damaged, or the types of assets that were stolen.

Hostages or Kidnapping Victims?

(ishostkid)
Categorical Variable

This field records whether or not the victims were taken hostage (i.e. held against their will) or kidnapped (i.e. held against their will and taken to another location) during an incident.

1 = “Yes” The victims were taken hostage or kidnapped.
0 = “No” The victims were not taken hostage or kidnapped.
-9 = "Unknown" It is unknown if the victims were taken hostage or kidnapped.

Total Number of Hostages/ Kidnapping Victims

(nhostkid)
Numeric Variable

This field records the total number of hostages or kidnapping victims. For successful hijackings, this value will reflect the total number of crew members and passengers aboard the vehicle at the time of the incident.

As with other fields, where several independent sources report different numbers of hostages, the GTD reflects the number given by the most recent source, unless there is reason to do otherwise. When there are several most recent sources available, or there are question about the validity of a recent source, the GTD will report the majority figure from a group of independent sources. Where there is no majority figure among independent sources, the database will record the lowest proffered hostage figure, unless there is clear reason to do otherwise.

In cases where the number of hostages or kidnapping victims is stated vaguely, for example, “…at least 11 hostages”, then the lowest possible number will be recorded, in this example “11.” If the number of hostages is unknown or unidentified, this field records “-99” (unknown).

U.S. Hostages or Kidnapping Victims?

(ishostkidus)
Categorical Variable

This field records whether or not U.S. citizens were taken hostage (i.e. held against their will) or kidnapped (i.e. held against their will and taken to another location) during an incident.

1 = "Yes" U.S. citizens were taken hostage or kidnapped.
0 = "No" U.S. citizens were not taken hostage or kidnapped.
-9 = "Unknown" It is unknown if U.S. citizens were taken hostage or kidnapped.

Number of U.S. Hostages/ Kidnapping Victims

(nhostkidus)
Numeric Variable

This field reports the number of U.S. citizens that were taken hostage or kidnapped in the incident. Conventions follow the “Total Number of Hostages/ Kidnapping Victims” field described above.

Hours of Kidnapping / Hostage Incident

(nhours)
Numeric Variable

If the "Attack Type" is "Hostage Taking (Kidnapping)," "Hostage Taking (Barricade Incident)," or a successful "Hijacking," then the duration of the incident is recorded either in this field or in the next field depending on whether the incident lasted a matter of hours or days. If neither hours nor days are known, both fields are coded as “-99” (unknown).
If the incident lasted for less than 24 hours, this field records the approximate number of hours.

If the incident lasted for more than 24 hours (i.e., at least one day), then the approximate number of days is recorded in the next field.

Days of Kidnapping / Hostage Incident

(ndays)
Numeric Variable

If the “Attack Type” is “Hostage Taking (Kidnapping),” “Hostage Taking (Barricade Incident),” or (successful) “Hijacking” and if the duration of the kidnapping / hostage incident last for more than 24 hours, this field records the duration of the incident in days. If information on hours and days is provided, the figure is rounded to the nearest day.

Country That Kidnappers/Hijackers Diverted To

(divert)
Text Variable

If the “Attack Type” is “Hostage Taking (Kidnapping)” or “Hijacking” then this field will list the country that hijackers diverted a vehicle to, or the country that the kidnap victims were moved to and held. If hijackers did not divert a vehicle to another country, this field is blank. If a vehicle was diverted to multiple countries, this field will record the first country that the vehicle was diverted to, and the others will be listed in the “Additional Notes” field.

Country of Kidnapping/Hijacking Resolution

(kidhijcountry)
Text Variable

If the “Attack Type” is “Hostage Taking (Kidnapping)” or “Hijacking” then this field lists the country in which the incident was resolved or ended. If the incident was not resolved in another country, this field is blank. If a vehicle was diverted to more than one country, this field will record the last country that it was diverted to, and the others will be listed in the “Additional Notes” field.

Ransom Demanded?

(ransom)
Categorical Variable

“Yes” is recorded if the incident involved the demand of ransom in the form of money.

1 = “Yes” The incident involved a demand of ransom.
0 = “No” The incident did not involve a demand of ransom.
-9 = "Unknown" It is unknown if the incident involved a demand of ransom.

Total Ransom Amount Demanded

(ransomamt)
Numeric Variable
If a ransom was demanded, then the amount (in U.S. dollars) is listed in this field. If a ransom was demanded but the monetary figure is unknown, then this field will report "-99" (unknown). If there are conflicting reports on the amount of ransom demanded, the majority figure from independent sources will be used. If no majority exists, the lowest proffered figure will be used, unless that figure comes from a source of questionable validity or there is another compelling reason to do otherwise.

Ransom Demanded from U.S. Source(s)?

(ransomus)
Categorical Variable

"Yes" is recorded if the incident involved the demand of ransom from a U.S. source.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Yes" The incident involved a demand of ransom from a U.S. source.</td>
</tr>
<tr>
<td>0</td>
<td>"No" The incident did not involve a demand of ransom from a U.S. source.</td>
</tr>
<tr>
<td>-9</td>
<td>"Unknown" It is unknown if the incident involved a demand of ransom from a U.S. source.</td>
</tr>
</tbody>
</table>

Ransom Amount Demanded from U.S. Sources

(ransomamtus)
Numeric Variable

If a ransom was demanded from U.S. sources, then the amount (in U.S. dollars) is listed in this field. If a ransom was demanded from U.S. sources but the monetary figure is unknown, then this field will report "-99" (unknown). If there are conflicting reports on the amount of ransom demanded from a U.S. source, the majority figure from independent sources will be used. If no majority exists, the lowest proffered figure will be used, unless that figure comes from a source of questionable validity or there is another compelling reason to do otherwise.

Total Ransom Amount Paid

(ransompaid)
Numeric Variable

If a ransom amount was paid, then the amount (in U.S. dollars) is listed in this field. If a ransom was paid but the monetary figure was unspecified, then this field will report "-99" (unknown). A value of "-99" will also be reported for any case where it is suspected that a ransom was paid, but it has not been confirmed. If there are conflicting reports on the amount of ransom paid, the majority figure from independent sources will be used. If no majority exists, the lowest proffered figure will be used, unless that figure comes from a source of questionable validity or there is another compelling reason to do otherwise.

Ransom Amount Paid By U.S. Sources

(ransompaidus)
Numeric Variable

If a ransom amount was paid by U.S. sources, then this figure is listed in U.S. dollars. If a ransom was paid by U.S. sources but the monetary figure was unspecified, then this field will report "-99" (unknown). If there are conflicting reports on the amount of ransom paid by a U.S. source, the majority figure from independent sources will be used. If no majority exists, the lowest proffered figure will be used, unless that figure comes from a source of questionable validity or there is another compelling reason to do otherwise.
Ransom Notes

This field is used to record any specific details relating to a ransom that are not captured in the other fields. This includes any information about non-money demands made by perpetrators, as well as information on conflicting reports of how much money was demanded and/or paid.

Note: This field is presently only systematically available with incidents occurring after 1997.

Kidnapping/Hostage Outcome

This field captures the eventual fate of hostages and kidnap victims. If the “Attack Type” is “Hostage Taking (Kidnapping),” “Hostage Taking (Barricade Incident),” or a successful “Hijacking,” then this field applies. The seven values for this field are:

1 = Attempted Rescue
2 = Hostage(s) released by perpetrators
3 = Hostage(s) escaped (not during rescue attempt)
4 = Hostage(s) killed (not during rescue attempt)
5 = Successful Rescue
6 = Combination
7 = Unknown

Number Released/Escaped/Rescued

If the “Attack Type” is “Hostage Taking (Kidnapping),” “Hostage Taking (Barricade Incident),” or a successful “Hijacking,” then this field will apply. This field records the number of hostages who survived the incident.

As with the total number of kidnapping victims, where several independent sources report different numbers of hostages, the database will reflect the number given by the most recent source, unless there is reason to do otherwise. If there are several most recent sources available, the majority number form a group of independent sources will be used, unless there is reason to do otherwise. Where there is no majority figure among independent sources, the database will record the lowest proffered hostage released/escaped/rescued figure, unless there is clear reason to do otherwise.

In cases where the number of hostages released/escaped/rescued is stated vaguely, for example “…at least 11 hostages were released”, then the lowest possible number will be recorded, in this example “11”.

VIII. Additional Information and Sources

Additional Notes
Text Variable

This field is used to capture the following information:

- Additional information that could not be captured in any of the above fields, such as details about hostage conditions or additional countries hijacked vehicles were diverted to.
- Supplemental important information not specific to the particular attack, such as multiple attacks in the same area or by the same perpetrator.
- Uncertainties about the data (such as differing reports of casualty numbers or perpetrators responsible).
- Unusual factors, such as a shift in tactics, the reappearance of an organization, the emergence of a new organization, an attack carried out on a historical date, or an escalation of a violent campaign.
- The fate (legal, health, or otherwise) of either victims or perpetrators where this is mentioned in GTD source documents.
- In addition, the instructions for several fields listed above have specific indications for placing additional information in the “Additional Notes” field, as needed:
 - **Specific Target/Victim**
 - If the Target/Victim is multiple victims (e.g., in a kidnapping or assassination), only the first name is recorded in the “Specific Target/Victim” field, with remaining names recorded in the “Additional Notes” field.
 - **Perpetrator Individual(s)’ Name(s)**
 - Names of individuals identified as planners, bomb-makers, etc., who are indirectly involved in an attack, may recorded in the “Additional Notes” field.
 - **Mode for Claim of Responsibility**
 - If greater detail is needed than provided for the “Mode for Claim of Responsibility” field (for instance, a particularly novel or strange mode is used) this information may be captured in the “Additional Notes” field.
 - **Kidnapping/Hostage Outcome**
 - If greater detail is available than the Kidnapping/Hostage Outcome field allows, then further details about the fate of hostages/kidnapped may be recorded in the “Additional Notes” field.

Note: This field is presently only systematically available with incidents occurring after 1997.

First Source Citation

(scite1)

Text Variable

This field cites the first source that was used to compile information on the specific incident.

Note: This field is presently only systematically available with incidents occurring after 1997.

Second Source Citation

(scite2)

http://semanticommunity.info/Data_Science/Global_Terrorism_Database
Updated: Sat, 19 Sep 2015 05:15:30 GMT
Powered by mindtouch™
Text Variable

This field cites the second source that was used to compile information on the specific incident.

Note: This field is presently only systematically available with incidents occurring after 1997.

Third Source Citation

(scite3)

Text Variable

This field cites the third source that was used to compile information on the specific incident.

Note: This field is presently only systematically available with incidents occurring after 1997.

Data Collection Effort

(dbsource)

Text Variable

This field identifies the original data collection effort in which each event was recorded. Each value corresponds to a different data collection project or group. The three largest (PGIS, CETIS, and ISVG) correspond to the original collection efforts for GTD1, GTD2, and GTD3, respectively. The additional values correspond to retrospective data collection efforts undertaken by START as part of larger research projects at the center. The originating source in those projects was used to identify cases that were not in the GTD but could be identified in other reputable media sources. These cases were then researched, sourced, and coded into updates to the GTD.

Table: Data Collection Efforts for the Global Terrorism Database, 1970-2011

My Note: This table is real and will go into Spotfire!

<table>
<thead>
<tr>
<th>Data Collection Effort</th>
<th># of Events</th>
<th>Originating Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Abortion Project 2010</td>
<td>187</td>
<td>Cases from the National Abortion Federation and other data sources on antiabortion attacks in the United States</td>
</tr>
<tr>
<td>Armenian Website</td>
<td>40</td>
<td>Australian Turkish Media Group</td>
</tr>
<tr>
<td>CAIN</td>
<td>1589</td>
<td>Conflict Archive on the Internet for Northern Ireland</td>
</tr>
<tr>
<td>CBRN Global Chronology</td>
<td>47</td>
<td>Mohtadi, Hamid and Antu Murshid. 2006. A Global Chronology of Incidents of Chemical, Biological,</td>
</tr>
<tr>
<td>Source</td>
<td>ID</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>CETIS</td>
<td>16192</td>
<td>Center for Terrorism and Intelligence Studies - Collected GTD2</td>
</tr>
<tr>
<td>Eco Project 2010</td>
<td>146</td>
<td>Cases on eco-terrorism within the United States</td>
</tr>
<tr>
<td>ISVG</td>
<td>17211</td>
<td>Institute for the Study of Violent Groups - Collected GTD3 (2008-2011)</td>
</tr>
<tr>
<td>Data Source</td>
<td>Entries</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Leuprecht Canadian Data</td>
<td>6</td>
<td>Data on attacks in Canada provided by Christian Leuprecht, Royal Military College of Canada</td>
</tr>
<tr>
<td>PGIS</td>
<td>63792</td>
<td>Pinkerton Global Intelligence Services - collected GTD1</td>
</tr>
<tr>
<td>Sageman</td>
<td>3</td>
<td>Cases from Marc Sageman's Book, Understanding Terror Networks</td>
</tr>
<tr>
<td>START Primary Collection</td>
<td>1089</td>
<td>National Consortium for the Study of Terrorism and Responses to Terrorism (2011-present)</td>
</tr>
<tr>
<td>UMD Algeria 2010-2012</td>
<td>848</td>
<td>Multi-source comparison of events from Algeria between 1990 – 2010, including Maghreb and Sahel Terrorism by Yonah Alexander.</td>
</tr>
<tr>
<td>UMD Assasinations Project</td>
<td>18</td>
<td>Multi-source search of high-profile assassinations</td>
</tr>
<tr>
<td>UMD Black Widows 2011</td>
<td>7</td>
<td>Multi-source comparison of events by the "Black Widows" attackers in Chechnya.</td>
</tr>
<tr>
<td>UMD JTMM Nepal 2012</td>
<td>104</td>
<td>Multi-source search of Janatantrik Terai Mukti Morcha and related groups</td>
</tr>
<tr>
<td>UMD Miscellaneous</td>
<td>69</td>
<td>Miscellaneous events from a variety of small data-improvement projects.</td>
</tr>
<tr>
<td>UMD Schmid 2012</td>
<td>1169</td>
<td>Alex P. Schmid, Director of the Terrorism Research Initiative (TRI) provided data he developed in the course of his career in academia and in the United Nations</td>
</tr>
<tr>
<td>Country</td>
<td>Number of Incidents</td>
<td>Percent</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>20</td>
<td>0.40%</td>
</tr>
<tr>
<td>Allnice</td>
<td>1</td>
<td>0.04%</td>
</tr>
<tr>
<td>Algeria</td>
<td>311</td>
<td>0.69%</td>
</tr>
<tr>
<td>Angola</td>
<td>13</td>
<td>0.26%</td>
</tr>
<tr>
<td>Anguila (Bahama)</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Argentina</td>
<td>15</td>
<td>0.31%</td>
</tr>
<tr>
<td>Armenia</td>
<td>6</td>
<td>0.13%</td>
</tr>
<tr>
<td>Austria</td>
<td>5</td>
<td>0.10%</td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>4</td>
<td>0.08%</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>47</td>
<td>0.95%</td>
</tr>
<tr>
<td>Belarus</td>
<td>9</td>
<td>0.18%</td>
</tr>
<tr>
<td>Belgium</td>
<td>4</td>
<td>0.08%</td>
</tr>
<tr>
<td>Bolivia</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Bosnia</td>
<td>22</td>
<td>0.44%</td>
</tr>
<tr>
<td>Bosnia-Herzegovina</td>
<td>12</td>
<td>0.24%</td>
</tr>
<tr>
<td>Brazil</td>
<td>24</td>
<td>0.48%</td>
</tr>
<tr>
<td>Burundi</td>
<td>5</td>
<td>0.10%</td>
</tr>
<tr>
<td>Cambodia</td>
<td>216</td>
<td>0.56%</td>
</tr>
<tr>
<td>Ecuador</td>
<td>4</td>
<td>0.08%</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>7</td>
<td>0.14%</td>
</tr>
<tr>
<td>China</td>
<td>35</td>
<td>0.70%</td>
</tr>
<tr>
<td>China</td>
<td>8</td>
<td>0.16%</td>
</tr>
<tr>
<td>Colombia</td>
<td>35</td>
<td>0.70%</td>
</tr>
<tr>
<td>Comoros</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Congo (Brazzaville)</td>
<td>23</td>
<td>0.46%</td>
</tr>
<tr>
<td>Congo (Kinshasa)</td>
<td>22</td>
<td>0.44%</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>7</td>
<td>0.14%</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>7</td>
<td>0.14%</td>
</tr>
<tr>
<td>Croatia</td>
<td>4</td>
<td>0.08%</td>
</tr>
<tr>
<td>Croatia</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Denmark</td>
<td>6</td>
<td>0.12%</td>
</tr>
<tr>
<td>Djibouti</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>El Salvador</td>
<td>20</td>
<td>0.40%</td>
</tr>
</tbody>
</table>

My Note: I should be able to create these in Spotfire
<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
<th>Percentage</th>
<th>Rank</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>100</td>
<td>2.02%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Peru</td>
<td>28</td>
<td>0.56%</td>
<td>1</td>
<td>176</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>7</td>
<td>0.14%</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Paraguay</td>
<td>3</td>
<td>0.06%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Peru</td>
<td>324</td>
<td>6.48%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Philippines</td>
<td>198</td>
<td>4.07%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Poland</td>
<td>3</td>
<td>0.06%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
<td>0.02%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Romania</td>
<td>1</td>
<td>0.02%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Russia</td>
<td>32</td>
<td>0.65%</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Romania</td>
<td>18</td>
<td>0.28%</td>
<td>1</td>
<td>176</td>
</tr>
<tr>
<td>Senegal</td>
<td>6</td>
<td>0.12%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Serbia</td>
<td>4</td>
<td>0.08%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Singapore</td>
<td>1</td>
<td>0.02%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Somalia</td>
<td>78</td>
<td>1.56%</td>
<td>1</td>
<td>124</td>
</tr>
<tr>
<td>South Africa</td>
<td>426</td>
<td>8.60%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>South Korea</td>
<td>4</td>
<td>0.08%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Spain</td>
<td>502</td>
<td>1.01%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>29</td>
<td>0.59%</td>
<td>1</td>
<td>176</td>
</tr>
<tr>
<td>Sudan</td>
<td>2</td>
<td>0.04%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Suriname</td>
<td>4</td>
<td>0.08%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Swaziland</td>
<td>1</td>
<td>0.02%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>5</td>
<td>0.10%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Switzerland</td>
<td>12</td>
<td>0.24%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tanzania</td>
<td>5</td>
<td>0.10%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Thailand</td>
<td>67</td>
<td>1.34%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>14</td>
<td>0.28%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tanzania</td>
<td>6</td>
<td>0.12%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tanzania</td>
<td>6</td>
<td>0.12%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Uganda</td>
<td>4</td>
<td>0.08%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>59</td>
<td>1.18%</td>
<td>1</td>
<td>124</td>
</tr>
<tr>
<td>United States</td>
<td>28</td>
<td>0.57%</td>
<td>1</td>
<td>1043</td>
</tr>
<tr>
<td>Uganda</td>
<td>1</td>
<td>0.02%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Vietnam</td>
<td>25</td>
<td>0.48%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yemen</td>
<td>5</td>
<td>0.10%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Zambia</td>
<td>1</td>
<td>0.02%</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL: 4954 100.00% 18216 12176 45 1214